
Automatic generation of behavior trees for the
execution of robotic manipulation tasks

Parikshit Verma
Inst. of Industrial and Control Eng.
Universitat Politcnica de Catalunya

Barcelona, Spain
parikshit.verma@estudiantat.upc.edu

Mohammed Diab
Dept. of Electrical and Electronic Eng.

Imperial College London
London, UK

ORCID: 0000-0002-5743-5190

Jan Rosell
Inst. of Industrial and Control Eng.
Universitat Politcnica de Catalunya

Barcelona, Spain
ORCID: 0000-0003-4854-2370

Abstract—Robots should be able to exercise reasoning in both
symbolic and geometric levels in order to plan a manipulation
task. The execution of such tasks needs to be robust enough
to cope with real environments. In an attempt to address this
pertinent industry need, the paper proposes the use of behavior
trees for effective robotic manipulation in dynamic environments.
This paper presents a method to automatically generate a
behavior tree and showcases its ability to enable the robot to
reason at different levels and adapt to an uncertain and changing
environment. This allows for a complex task to be robustly
executed, pioneering the advancement towards fully functional
service robots.

Index Terms—Robotic manipulation, task and motion plan-
ning, execution manager.

I. INTRODUCTION

With the latest paradigm of a robot being safe and conducive
around humans and their ability to carry out complex tasks
with maximum autonomy, there is a visible shift in the trend of
robotics, from industrial robots to increasingly service robots.
In this scenario, Task and Motion Planning (TAMP) plays an
important role, since the automatic execution of any robotic
manipulation tasks involves reasoning at both symbolic and
geometric levels, as well as the ability to adapt/react to uncer-
tain and changing environments. The reasoning at a symbolic
level is generally considered as a task planning problem,
whereas the reasoning at geometric level is considered as a
motion planning problem. Planning is done off-line, although
on-line adaptation or replanning may be necessary to avoid a
failed task execution.

For instance, consider a case where a robot is employed as a
bartender in a restaurant. After receiving the drink order from
the customer, with symbolic information of the environment,
the robot generates a task plan consisting of the sequence of
robot actions to be performed and, for each robot action, a
robot trajectory is generated using the geometric information
of the environment. During the plan execution, any potential
change in the environment (like the drink being unavailable
in the storage or the drink storage location being changed or
the pose of the drink being changed) may preempt an action
to start due to the non-satisfaction of the action preconditions,

This work was partially supported by the Spanish Government through the
project PID2020-114819GB-I00

or may lead to a failure in the action outcome. This gives
rise to the need to replan the tasks for the new state of the
environment or adapt/replan the trajectory of a specific action.

To cope with these issues, the problem addressed in this
paper is, first, the off-line automatic generation of the code
needed by a task manager to execute a complex task and
motion plan and, secondly, the on-line adaptation of the se-
quence of tasks and motions to comply to the actual situations
encountered while executing the task.

In this paper, the task planning is done using the Fast-
Forward planner (FF, [1]), which does a heuristic search in
state space to produce a symbolic-feasible sequence of robot
actions that bring the initial symbolic state to the goal one.
For each robot action in the plan, a geometric-feasible path
is searched using The Kautham Project (TKP, [2]), a motion
planning framework based on the Open Motion Planning
Library suite of sampling-based motion planners (OMPL, [3]).
The linkage between the symbolic actions and the geometric
information is done through an interfacing layer defined as
an XML configuration file, following the TAMP framework
proposed in [4]. In the configuration file, the geometric de-
scription of each symbolic robot action is provided, e.g. for a
Pick action there is information of the robot start configuration
and of the goal (grasping) configuration (or alternatively, if the
inverse kinematics of the robot is available, of the potential
grasp poses where the gripper could be located w.r.t the object
reference frame to pick the object). The TAMP framework is
based on a Python client that calls the task planning service
and the motion planning service offered by FF and The
Kautham Project, respectively, using the Robotic Operation
System (ROS, [5]).

The TAMP framework proposed in [4] is extended here
with the capability to automatically write an output XML file
that represents the Behavior Tree (BT, [6]) that may allow
to execute the task with a real robot using a BT executor.
Behavior Trees are an alternative to Finite State Machines
(FSMs, [7]) as an execution manager for task execution in
real-time. Since BTs can be represented in an XML format,
to execute the TAMP problems in a real robot, the framework
simply needs to generate the behavior tree XML file once
the TAMP problem is solved and prior to the real execution.
Moreover, the ability of BTs to be edited during run time and



Fig. 1. TAMP framework.

the fact that one can design reactive systems with BTs, makes
BT executor a robust execution manager. The BT executor will
have access to the actual robot controllers, both planing levels
and the interfacing layer and all the communications will be
based on ROS.

The paper is organized as follows. First, Sec. II and III
review the TAMP framework and Behavior Trees, respectively,
and then Sec. IV proposes the structure and automatic gener-
ation of behavior trees for TAMP purposes. Finally, Sec. V
sketches the conclusions and future work.

II. THE PLANNING FRAMEWORK

This section summarizes the TAMP planning framework
introduced in [4] and sketched in Fig. 1.

For planning the task at symbolic level, the FF [1] planner
is used. FF is a domain independent planning system that
can handle planning tasks specified in the Planning Domain
Definition Language (PDDL, [8]). A ROS server has been
implemented to wrap the FF planner. The FF service requires
two PDDL files, one describing the domain and the other
describing the problem. The domain file consists of actions,
pre-conditions and post-conditions; the problem file has the
information about the world, the initial state and the goal state.
The service computes a feasible sequence of robot actions that
will be called Action Plan.

For making a motion plan, TKP [2] is used. TKP is
a software tool that provides different planners for motion
planning, as well as visualization tools to view the trajectories.
The main core of motion planners is provided by OMPL [3].
TKP has a ROS interface and can be accessed via ROS
services. The motion planning problem is defined with an
XML file (the Kautham problem file) with data regarding the
poses and geometries of the obstacles and the robot, as well
as the planner to be used, its parameters and the query to be
solved. The geometric information can be accessed through
symbolic labels defined in the Kautham problem file. The
TAMP framework uses some of the TKP services to set the
initial scenario and to set different queries to be solved.

The interfacing layer between the symbolic level and ge-
ometric level is implemented as an XML configuration file
that contains the geometric information of each of the robot
actions defined in the domain PDDL file. This file is used
by the TAMP manager, which is a client to the task and

Fig. 2. XML Representation of Behavior Trees.

motion planning services. The TAMP manager first calls the
task planning service and then, for each robot action in the
plan, calls the motion planning service, using the information
provided by the configuration file.

III. BEHAVIOR TREES

Behavior Trees can be seen as an alternative to Finite
State Machines. The difference between the two is that the
conditions and the states are coupled in FSM but in BTs the
conditions are coupled with actions. A set of action-condition
is generally called a behavior. Due to the special building
blocks of BTs, BTs provide modularity and re-usability of
these behaviors. BTs are also more easy to read and maintain.

A. BT nodes

The building blocks of BTs are known as BT-nodes. These
nodes are broadly classified into two classes: Control Nodes
and Execution Nodes. The control nodes help in regulating a
periodic signal called tick which is generated by the root of the
tree, whereas the execution nodes query the robot hardware to
either get a feedback from environment or perform a robot
action. The control nodes are mainly of four types:

• Sequence Node: A sequence node is a control flow node
which regulates tick amongst its multiple child nodes, one
child node at a time, in a given sequence (left to right
manner). If any of the child nodes returns a failure, the
sequence node returns a failure. In case all child nodes
return a success, the sequence node returns success.

• Parallel Node: A parallel node is a control flow node which
regulates tick amongst multiple child nodes simultaneously.
If a user-defined number of the child nodes returns failure,
the parallel node returns failure. In case all child nodes
return success, the parallel node returns success.

• Fallback Node: A fallback node can be seen as a logical
OR. This node regulates the tick amongst its multiple child
nodes in a given sequence (left to right manner). As soon
as one of the children returns success, the Fallback node
returns success. In case all child nodes return failure, the
fallback node returns failure.

• Decorator Node: These nodes are used to manipulate the
output of a child node. For example, the invert-the-output
decorator returns a failure when the child node returns a
success, and vice-versa.



Fig. 3. General Behavior Representation.

In this work, sequence nodes, which are represented as an
right arrow, and fallback nodes, which are represented with a
question mark, will be used.

There are two types of execution nodes:

• Action: The action nodes do not have child nodes. These
nodes can return Success, Failure or Running. Due to the
Running state of the Action Node, these nodes can be
preempted. These are represented as boxes in BTs.

• Condition: The condition nodes do not have child nodes.
These nodes can return success and failure only. These are
represented as circles in BTs.

B. XML description

Mathematically, BTs can be represented as directed acyclic
graphs. Hence the BTs can easily be described in an XML
file, as that shown in Fig. 2, where: a) the root defines the
main behavior tree to be executed; b) each behavior tree has
its own unique ID; c) the execution nodes are action nodes
(no condition nodes are included in this example); d) with
the Subtree tag one behavior tree can point to another one.
Moreover, each node in a behavior tree can have input and
output data ports which provides flexibility in exchange of data
between nodes and between different behavior trees. This is
done using a Blackboard which is a key/value storage shared
by nodes of a tree. The input and output ports are connected
by using the same key of the Blackboard.

C. ROS actions and services

To implement BTs for task and motion planning problems,
the behaviorTree.ROS [9] library is used. This library gives
an easy class implementation of BTs. The classes provide a
way of initializing each BT node as a ROS node during the
time of execution. Hence these BT nodes act as clients to ROS
action servers and service servers. As the BT action nodes can
be preempted, they are implemented as clients to ROS Action
Servers and BT condition nodes are implemented as clients to
ROS Service Servers. The exchange of information from a BT
client to a ROS server is done via input-output ports of BTs.

IV. PROPOSED APPROACH

This section proposes a BTs structure to execute the se-
quence of actions of a manipulation task generated by the
TAMP framework described above, and how to automatically
generate the XML files that describe them. The proposal
seeks to achieve robustness in the task execution and, with
this aim, behaviors trees at task level and at action level are

Fig. 4. Task Level behavior.

Fig. 5. Execute ActionPlan BT node for a given task.

designed with the general sequence structure shown in Fig. 3,
where:

• First, the pre-condition for the behavior to be executed is
checked and, upon failure, a recovery procedure is run so
as to make the pre-condition be satisfied.

• Second, the post-condition of the behavior is checked and,
upon failure, the behavior is executed (by a BT action or a
BT sub-tree) so as to make the post-condition be satisfied.

In the following subsections, the task level behaviors, action
level behaviors and the automated generation are explained.

A. Task Level behavior: The main BT

A root BT with a fixed structure is defined to manage the
execution at task level. This will be the main BT to be executed
and contains a sub-tree with a fixed ID called Task Level
behavior (see Fig. 4) that has:

• A pre-condition to check if the state of the environment
detected by the perception system corresponds to the initial
state used to obtain the Action Plan.

• A BT-action called ReplanTasks that restarts the planning
at task and motion levels.

• A post-condition to check if the state of the environment
detected by the perception system corresponds to the goal
one as specified by the user.

• A BT-subtree called Execute ActionPlan to execute the
Action Plan.

The ReplanTasks BT-action first updates the initial state with
the current perceived one (by calling ROS services to make
modifications in the PDDL problem file, the XML Kautham
problem file and to the TAMP configuration file, regarding the
symbolic and geometric information of the object locations).
Then it calls the FF task planner service to obtain a new Action
Plan and the Kautham motion planning service to find the
motion paths for the actions.

The Execute ActionPlan is a sub-tree indicating the se-
quence of indexed robot actions given by the FF task planning
service, assuming an initial state of the environment. The



Fig. 6. Pick Action Level behavior.

robot actions are indexed, as illustrated in Fig. 5, since an
action may need to be performed multiple times in order to
achieve the final state, and there may be the need to replan
the motion of a given particular action. Each indexed robot
action points to another sub-tree which is called Action Level
behavior explained next.

B. Action Level behaviors: BTs for task actions

Like the Task Level behaviors, the Action Level Behav-
iors have a fixed format, following the general BT structure
described in Fig. 3, and that will be particularized for each
type of robot action. As the BTs can be edited at run time,
the instances of Action Level Behaviors can be updated when
the initial state changes and the action plan is updated. As
an example, Fig. 6 shows the Pick Action Level Behavior
where:

• The pre-conditon checks if the perceived pose of the object
to be grasped is the same as the nominal object pose that
was used to compute the motions.

• The recovery action to be done (upon failure of the pre-
condition) consist in, first, calling the service to update the
geometric information of the object and, then, in recom-
puting a collision-free grasping motion using the Kautham
motion planning service.

• The post-condition checks if the gripper of the robot is full,
meaning that the pick operation has been successful.

• The Pick action consists in a sequence of BT-actions, each
one performed by the corresponding ROS service action of
the robot and gripper: a) move arm to grasp configuration;
b) close gripper; c) move arm to home configuration.

The ReplanMotion BT-action first updates the geometric in-
formation of the object to be picked and then queries TKP
services to obtain a collision free trajectory.

C. Automatic generation and execution of XML files

Following the BT structure proposed, the TAMP framework
described in Sec. II has been extended so as to output the XML
files of the BTs. Now the TAMP manager starts by writing the
XML of the Task Level Behavior, which is independent of the
problem to be solved. Then, after calling the task planning
service, the manager writes the XML file for the Execute
ActionPlan BT, as in Fig. 5, hence completing the first instance
of Task Level Behavior.

Then the TAMP manager manages each of the actions in the
plan using the information of the TAMP configuration file and
calling the motion planning service when necessary. Moreover,
the TAMP manager also writes the XML file corresponding
to the Action Level Behavior BT of the action. This includes
the coding of the trajectory generated by the motion plan as
required by the robot ROS action service. Once all the actions
have been managed, the first instance of all the Action Level
Behaviors is complete.

The generated BT XML files (the Task Level Behavior and
the Action Level Behaviors) are passed to the BT executor
which is responsible for initialising the tree, ticking the nodes
of the BT and monitoring the state of the Task level and Action
level behaviours. If a change in state is observed, the tree is
re-initialised, hence executing the task and motion planning
problem in a robust manner.

V. CONCLUSIONS AND FUTURE WORK

This paper has proposed a procedure to generate behavior
trees (BTs) which are able to execute a robot manipulation
task in possibly uncertain and changing environments. The
approach is integrated within a task and motion planning
framework that computes the sequence of actions and asso-
ciated motions to perform the manipulation task, and that
automatically writes the XML files that describe the BTs. The
proposal takes advantage of the ability of BTs to be edited
during run time, allowing adaptation of the action plan or of
the trajectories to changes in the state of the environment.

Intelligent perception systems and reasoning mechanisms
will be integrated in the future to allow the robot to interpret
failures and provide recovery strategies. Also, testing this
approach in the real scenarios with the TIAGo robot will be
considered. Starting with just Move, Pick and Place actions,
manipulation tasks will be designed to show how the robust-
ness of the proposed framework may enable service robots to
be easily used in both industrial and domestic environments.

REFERENCES

[1] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan generation
through heuristic search,” Journal of Artificial Intelligence Research, pp.
253–302, 2001.

[2] J. Rosell, A. Pérez, A. Aliakbar, Muhayyuddin, L. Palomo, and N. Garcı́a,
“The Kautham Project: A teaching and research tool for robot motion
planning,” in IEEE Int. Conf. on Emerging Technologies and Factory
Automation, 2014.

[3] I. Sucan, M. Moll, L. E. Kavraki et al., “The open motion planning
library,” Robotics & Automation Magazine, IEEE, vol. 19, no. 4, pp. 72–
82, 2012.

[4] S. Saoji and J. Rosell, “Flexibly configuring task and motion planning
problems for mobile manipulators*,” in 2020 25th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
vol. 1, 2020, pp. 1285–1288.

[5] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “ROS: an open-source robot operating system,” in ICRA
Workshop on Open Source Software, vol. 3, 2009, p. 5.

[6] M. Colledanchise and P. gren, “Behavior trees in robotics and AI,” Jul
2018. [Online]. Available: http://dx.doi.org/10.1201/9780429489105

[7] G. O’Regan, Automata Theory, 2016, p. 117126.
[8] M. Ghallab, A. Howe, C. Knoblock, D. Mcdermott, A. Ram, M. Veloso,

D. Weld, and D. Wilkins, “PDDL—The Planning Domain Definition
Language,” 1998.

[9] D. Faconti, “Behavior Tree Ros Library,”
https://github.com/BehaviorTree/BehaviorTree.ROS.


