
Task Planning Using Physics-based Heuristics on Manipulation
Actions

Aliakbar Akbari, Muhayyuddin and Jan Rosell
Institute of Industrial and Control Engineering (IOC)

Universitat Politècnica de Catalunya (UPC) – Barcelona Tech
Barcelona, Spain, jan.rosell@upc.edu

Abstract—In order to solve mobile manipulation problems, the
efficient combination of task and motion planning is usually re-
quired. Moreover, the incorporation of physics-based information
has recently been taken into account in order to plan the tasks
in a more realistic way. In the present paper, a task and motion
planning framework is proposed based on a modified version
of the Fast-Forward task planner that is guided by physics-
based knowledge. The proposal uses manipulation knowledge for
reasoning on symbolic literals (both in offline and online modes)
taking into account geometric information in order to evaluate
the applicability as well as feasibility of actions while evaluating
the heuristic cost. It results in an efficient search of the state
space and in the obtention of low-cost physically-feasible plans.
The proposal has been implemented and is illustrated with a
manipulation problem consisting of a mobile robot and some
fixed and manipulatable objects.

Index Terms—Task and motion planning, Manipulation,
Physics-based heuristics.

I. INTRODUCTION

Mobile manipulation planning requires, at task level, the
finding of a sequence of actions, and at motion level, the
finding of the way to execute them. Therefore, the efficient
combination of both planning levels has currently emerged as
a substantial challenge. In this line, some approaches like [1],
[2], [3], [4] considered external modules, layers or mechanisms
to interface between the symbolic and the geometric reasoning
processes. Other approaches look for hierarchical planning
solutions based on hierarchical planning, like [5], [6], [7], [8],
that evaluate task-level decisions with low-level geometric-
reasoning modules. Finally, some other approaches like [9],
[10], [11] propose different ways to integrate geometric infor-
mation within the Fast-Forward (FF) task planner [12], which
has been recognized as one of the best symbolic task planners
in Artificial Intelligence. The FF method is an heuristic-based
symbolic task planner based on two main components. One is
responsible for finding, for a given state being analyzed and
using a relaxed version of the GraphPlan algorithm [13], an
heuristic value of the cost to reach the goal, as well as the set
of helpful actions, i.e., those actions that executed from that
state have a high probability of being in the solution plan. The
other is devoted to the search for the more promising successor
state using the heuristic values and an Enforced Hill-Climbing
method.

This work was partially supported by the Spanish Government through the
projects DPI2013-40882-P and DPI2014-57757-R. Aliakbar Akbari is sup-
ported by the Spanish Government through the grant FPI 2015. Muhayyuddin
is supported by the Generalitat de Catalunya through the grant FI-DGR 2014.

Complementarily, on the one hand, the ontology-based
knowledge representation has been employed to enhance ma-
nipulation planning by easing the way to hand over useful
information upon the planning phase (for instance, some
approaches like [14], [15] tackle manipulation tasks involving
housework activities by describing the robot manipulation
world in terms of ontologies). On the other hand, the in-
corporation of a physics-based engine at the motion planning
level has been proposed to enable and take into account the
interaction between rigid bodies, in order to determine in a
realistic way how to execute the symbolic actions obtained
by the task planning level. For instance, the work in [16]
used dynamic simulation to solve the problem of navigating
among moveable obstacles that can be pushed, and the work
in [17] proposed a variant of the Rapidly-exploring Ran-
dom Trees (RRT, [18]) to consider interactions between rigid
bodies, besides the kinodynamic (geometric and differential)
constraints of the robot. Similarly, the approach in [19] also
used a sampling-based planner with a dynamic engine as a
state propagator. This planner was called smart motion planner
because it incorporated ontological knowledge and a Prolog-
based reasoning on how to interact with objects, in order to
efficiently guide the exploration.

This combination of ontological knowledge-based task plan-
ning and physics-based motion planning was further explored
in [20] and [21]. The former approach first determined a
number of potential plans and then computed the accumulated
cost of each plan execution, in order to identify the most
feasible plan, by calling the low-level physics-based motion
planer. The latter presented a simultaneous task and motion
planning approach that used a physics-based motion planner
to evaluate the feasibility of selected actions explored when
planning at task level using GraphPlan, and to cut off the
branches of those infeasible actions, thus making the explo-
ration of the planning space more efficient. Both approaches
use the physics-based motion planner to evaluate the cost
of actions, and this makes them computationally costly. In
order to mitigate this drawback, the present paper proposes a
planning method based on the Fast-Forward, that only calls
the motion planner for evaluating the selected actions found
in the relaxed plan used to compute the heuristic cost to reach
the goal from a given state being explored, without the need
of calling the motion planner for any other action.

The paper presents a new framework for the efficient
combination of knowledge-based task planning and physics-



based motion planning based on the FF planner. A reasoning
process is performed on symbolic literals in terms of knowl-
edge and geometric information about the workspace (offline
reasoning), as well as using high-level reasoning and physics-
based motion planning to determine the applicability of actions
and to determine the feasibility of applicable actions along
their effects (online reasoning). As a consequence the proposed
method is able to prevent or discard some unnecessary actions
while planning. Moreover the computation of the heuristic
cost that guides the search of the solution plan takes into
account the physical properties of objects and the actual cost of
selected actions computed by a physics-based motion planner.
The proposal, therefore, aims to make the planning more
efficient and to find physically feasible low-cost plans.

II. PROBLEM FORMULATION AND SOLUTION OVERVIEW

A. Scope and a motivating example

This paper deals with manipulation problems where a
mobile robot is required to move from an initial region towards
a goal one in an indoor environment cluttered with obstacles
that can be either fixed or manipulatable. The existence of
manipulatable obstacles may partition the free subspace of
the configuration space of the robot, Cfree, into disconnected
regions Ci. If the initial and the goal regions of the query to
be solved lie in different disconnected regions, then the robot
will need to move some manipulatable obstacles away in order
to connect them and find a solution path. It is assumed that the
robot is able to perform three type of actions: push and pull
actions to change the position of manipulatable objects, and
the transit action to move freely along a collision-free path.
It is also assumed that there are two types of obstacles in
the environment, fixed obstacles which the robot must avoid,
and manipulatable obstacles (MObs) that can be pushed or
pulled by the robot along a given direction. In order to interact
with a MObs, the robot must be located in the corresponding
manipulatable region MRgn.

As an example, consider the task shown in Fig. 1 in which
the robot is located in the initial region and must move towards
the goal one. The initial and goal configurations of the robot
do not belong to the same connected region of Cfree and
therefore some manipulatable objects, labeled from A to H,
must be moved away. These objects must be manipulated
through a handle that determines the motion direction, as well
as the manipulation region (highlighted in dark red) where the
robot must be located in order to pull or push them. Moreover,
these objects have different physical features and some of
them, like object A, may be beyond the robot manipulation
capacity. Also, it must be noted that there can be some actions
which do not provide fruitful effects to solve the problem. For
example, pulling object F does not provide the access from C2

towards C3. Finally, note that a number of potential possible
plans may exist and the least-cost one is the one sought.

These aforementioned issues pose interesting challenges
that can be properly solved by considering an efficient com-
bination of task and physics-based motion planning.

Fig. 1: Manipulation problem: the robot (green sphere) has
to move from the initial to the goal region among fixed and
manipulatable obstacles (labeled according to their weight in
a decreasing order). Workspace regions are labeled with the
names of the associated configuration space being discon-
nected regions.

B. Problem Formulation

Let a manipulation planning problem T be defined as the
tuple T = 〈I,G,K〉 where I and G are, respectively, the initial
and goal states, and K is the ontological abstract knowledge
about the manipulation world.

A state is the tuple S = 〈L,W〉 comprising a conjunction
of literals L formed based on predicates applied to arguments
and that are true in the state, and the geometric information
of the workspace W describing the location of obstacles and
the configuration of the robot. A state changes when an action
is applied. An action a can be defined by a tuple a = 〈name,
pre, effect+, effect−, Q〉 where: name is a symbolic name;
pre includes a conjunction of literals which must hold for the
action to be launched; effect+ and effect− are, respectively, the
sets of literals to be added to or deleted from L after the action
is performed; and Q is a query to a physics-based motion
planner acting on W , that computes a path and its actual cost,
and returns the new state of the workspace. However, Q is not
called for all actions but only for some of them.

For a given action a, the literals defining the successor state
are computed as:

Succ(S.L, a) = S.L ∪ effect+(a)\effect−(a)

The geometric information W is updated with Q, or left
unchanged if Q is not called.

The following literals are used to define states, being
evaluated based on a reasoning process:
• HasAcc(FromRgn, ToRgn): Captures the result of geo-

metric reasoning and evaluates to true if a trajectory may
exist for the robot to move between regions FromRgn and
ToRgn.

• At(Robot, Rgn): Informs whether the Robot has reached
region Rgn.



• IsCritical(MObs): Holds if MObs is a manipulatable
obstacle whose removal makes two disjoint configuration
space regions to be connected.

• Located(MObs, Position): Holds if MObs is located at
Position after displacement.

• IsManipulatable(MObs): Informs whether MObs is a ma-
nipulatable obstacle.

The three type of actions considered and their preconditions
and positive and negative effects are:
• Transit(Rob, FromRgn, ToRgn):

Precondition: At(Rob, FromRgn), HasAcc(FromRgn,
ToRgn)
Add: At(Rob, ToRgn)
Delete: At(Rob, FromRgn)

• Push/Pull(Rob, MObs, FromPos, ToPos, MRgn, ToRgn):
Precondition: At(Rob, MRgn), IsManipulatable(MObs),
IsCritical(MObs), Located(MObs, FromPos)
Add: Located(MObs, ToPos), HasAcc(MRgn, ToRgn)
Delete: Located(MObs, FromPos), IsCritical(MObs)

Note that the push/pull actions are applied to have access to
a given single region ToRgn, therefore several push/pull actions
of the same object will be considered if we are interested in
being able to have access to different regions.

C. Solution Overview

In order to solve the aforementioned problem, physics-
based heuristics manipulation planning using knowledge is
proposed as illustrated in Fig. 2, based on the Fast Forward
task planning procedure (FF). The FF planning procedure does
an heuristic search in the state space, where the heuristic
used to estimate the cost to reach the goal from the state
being evaluated is done using the Relaxed Planning Graph
(RPG), which is a version of the Planning Graph that does
not consider the negative effects. The selection of the next
state in the exploration is done with Enforced Hill Climbing
(EHC). The variant of FF that we propose uses, on the one
hand, an offline reasoning process to incorporate knowledge
to the manipulation problem, related to the workspace and
to the manipulation of objects. Knowledge is represented by
ontologies using the Web Ontology Language (OWL). On the
other hand, the proposal considers an online reasoning process
and the use of a physics-based motion planner to evaluate the
heuristics that guides the search in the state-space. The relevant
issues of the three main parts are:
• The offline reasoning process is responsible of using the

knowledge to set the literals defining the initial state,
as well as to build a graph, called R, to define the
connectivity of the workspace and that will be used for
the online reasoning process.

• The Relaxed Planning Graph module contains the pro-
cedure to build the RPG to compute the heuristic value.
The construction of the RPG uses costs of actions that
take physical properties of the objects into account, and

Fig. 2: Variant of the FF planning schema with indications
of the sections where the different proposed components are
explained.

the actions appearing in the obtained relaxed planning
plan are evaluated with a physics-based motion planner in
order to check the feasibility and to compute the heuristic
value in terms of power consumption of actions. Besides,
the RPG construction is aided by the online reasoning-
process that evaluates the effects of the push and pull
actions with respect to the accessibility of the robot to
different regions after their execution.

• The State Space Heuristic Search module gets T as input
and returns either a solution plan of manipulation actions
or reports failure. It keeps iteratively exploring the states
using the EHC strategy and calling, for each state being
explored, the RPG module to estimate the physics-based
heuristic cost to reach the goal, as well as the feasible
helpful actions to follow.

After this overview, the paper is organized as follows. The
knowledge representation is explained in Sec. III, the offline
and online reasoning processes in Sec. IV and the physics-
based motion planner in Sec. V. Then, Sec. VI details the
algorithms of all the planning process, Sec. VII shows imple-
mentation issues and simulation results and finally Sec. VIII
sketches the conclusions.

III. MANIPULATION SEMANTIC KNOWLEDGE

Integrating knowledge within manipulation planning hands
over to the robot awareness that may allow it to accomplish
human-like tasks in which different sort of objects have to be
manipulated in a skillful manner. Ontology models can be used
to collect and classify knowledge within a specific domain,
and to provide access to this once required. Ontologies can
be developed by the Protégé editor [22] and encoded with
the Ontology Web Language (OWL) [23] with the purpose of
sharing knowledge upon multiple systems through the world
wide web. In the main, OWL categorizes knowledge over
classes, where collection of objects are stored, and individuals,
which entail classes elements and that can correspond one
another by means of properties.



To represent sufficient manipulation knowledge for the
robot, a taxonomy involving two main classes, Manipula-
tionWorld and ManipulationPlanning, have been defined in
the form of OWL1. The ManipulationWorld class comprises
knowledge regarding the manipulation world and is subdivided
into the following classes:
• ObjectsClassification: Class that collects information

about the objects type (e.g. fixed or manipulatable) and
its physical properties such as mass, friction coefficient,
etc.

• RobotProperties: Class that describes the robot properties
and capabilities in terms of bounds of forces and torques,
and of velocities and accelerations.

• Regions: Class that represents different types of regions
including manipulatable regions of objects, initial region
and goal region.

• Perception: Class that depicts the semantic map informa-
tion including the transformation matrices that locate the
objects.

The ManipulationPlanning class comprises knowledge re-
lated to task planning requirements and is subdivided into the
following classes:
• ProblemQueryConditions: Class that includes the condi-

tions about the initial and goal states of the manipulation
problem that can be set by a user. According to the
example, the initial state contains the initial region along
initial positions of objects and the goal state involves the
goal region of the robot.

• Predicates: Class that expresses a number of predicates
(e.g. At, HasAccess) with associated arguments that are
used inside task planning.

• ActionProperties: Class used to define actions and bind
them with their requirements Pre(a), effect+(a) and
effect−(a). The set of actions will be called K.A.

IV. REASONING ON SYMBOLIC LITERALS USING
KNOWLEDGE AND GEOMETRIC INFORMATION

The reasoning process consists of two steps: offline and on-
line. The offline is used to evaluate action conditions and assert
valid literals to the initial state I in order to avoid applying
inessential actions, like the manipulation of objects that do not
result in an increase of the connectivity of the configuration
space, or infeasible actions, like trying to manipulate objects
beyond the robot capabilities. The online aims to determine
the truth of literals after actions are applied.

In order to address the offline step, a graph representing the
disconnected regions of the free configuration space is first
computed (this is done with the approach proposed in [16]
that has been adapted to use the OWL knowledge). The nodes
of this graph are regions, and any two nodes are connected by
an edge if there exist an MObs whose motion may lead the
two disconnected regions to become a single connected one.
The edge is then labeled with this manipulatable obstacle, that

1OWL files are accessible at: https://sir.upc.edu/projects/ontologies/.

Fig. 3: Disjoint components of Cfree

is called a critical object. Also, a small circle at the end of the
edge illustrates from where the object can be manipulated (this
depends on which region the MRgn of the object lies, which
can be both if the object has more than one MRgn, only one,
or even none of them like object G in Fig. 1). Fig. 3 illustrates
the graph corresponding to the example of Fig. 1, where the
initial and goal nodes are highlighted as I(C1) and G(C5).

The offline reasoning process also determines:
• Whether the MRgn of critical objects are occupied by

other MObs. If this is the case, these MObs are also
labeled as critical, like object C.

• Whether the robot has access, from the initial region, to
the MRgn of the critical objects located at I(Ci) (this
is done by setting HasAcc literal for the initial state).
For instance, according to Fig. 1, literals HasAcc(initRgn,
MRgnObjectA) and HasAcc(initRgn, MRgnObjectC) are
initially valid.

• Whether the robot capability allows it to manipulate crit-
ical objects, taking into account their physical properties.

An online reasoning process is carried out during the con-
struction of the RPG in order to consider only those push/pull
actions according to the following criteria:
• If the obstacle being pushed/pulled is occupying the

MRgn of another obstacle, then a push/pull action is
considered with ToRgn set to that occupied MRgn. For
instance, the pull of object C with ToRgn set to the MRgn
of object B.

• Otherwise, if the obstacle being pushed/pulled is labeling
an edge of R between nodes Ci and Cj , and it is
manipulated from Ci, then for each critical object in Cj

a push/pull action is considered with ToRgn set to the
corresponding MRgn of the critical object. For instance,
the push of object F with ToRgn set to the MRgn of object
G, and the push of object F with ToRgn set to the MRgn
of object H.

Those push/pull actions satisfying this criteria and all cor-
responding transit actions will be called applicable actions.

V. PHYSICS-BASED MOTION PLANNING

Motion planning is generally devoted to find collision-
free trajectories from the start towards the goal state in the
configuration space. Physics-based motion planning, however,
integrates a physics-based engine that allows considering the
interaction between rigid bodies and, therefore, the consider-



ation of trajectories that include the purposeful manipulation
of objects with actions such as push or pull.

A physics-based motion planner is used to evaluate the
actions appearing in the plan extracted from the RPG when
computing the heuristic value. For the transit action, it eval-
uates whether a dynamically feasible path exists or not. For
the push/pull actions, it is used to evaluate the truth of the
HasAcc effect. This is done by iteratively pushing/pulling the
obstacle a given small amount and calling the motion planner
for the existence of a path from the MRgn to the ToRgn. If the
effects of actions are not met according to the result of motion
planning, the related action is pruned from the task planning
phase, as discussed in the next section. For instance, in the
explained example, there is not any valid displacement for the
pull action applied to object F that can satisfy the existence
of a collision-free trajectory from the MRgn of this object to
the MRgn of object G, neither for the case of the pull action
in order to have access to the MRgn of object H.

When the actions of the RPG plan are found to be feasible,
then the heuristic value will be set accordingly to the actual
cost of these actions. The actual cost can be computed by the
physics-based motion planners as indicated by [20], however
in this paper a unified cost is proposed that determines the
cost of both transit and push/pull actions with respect to power
consumed:

C =

n∑
i

fi · di

∆ti
, (1)

where fi represents the control forces applied to the robot, di

becomes the resultant displacement covered by the robot, and
∆ti is the ith time interval.

Then, the heuristic value of a RPG plan with n actions will
be:

h =

n∑
i

Ci (2)

VI. TASK PLANNING WITH PHYSICS-BASED HEURISTICS

To find the manipulation plan, the modified version of
the Fast-Forward (FF) planner interwoven with the reasoning
process and motion planning is proposed. It consists of two
main phases: constructing primarily the Relaxed Planning
Graph, taking into account the feasibility and actual cost of
actions to find the heuristic value, and then using the heuristic
search among state space applying Enforced Hill Climbing
(EHC) guided by heuristic value.

A. Relaxed Planning Graph

1) Computing the Relaxed Planning Graph: A Planning
Graph is comprised of a sequence of state-levels representing
a set of literals and action-levels containing a set of actions.
It also considers mutual exclusion relations among each level
indicating how the combination of literals can be true at each
state-level. The construction phase is launched from a state-
level including the initial state of the manipulation world, so
an action-level appears containing actions whose preconditions
are already satisfied and they may add or remove some literals

in the subsequent state. The expansion process continues till
all goal conditions are met. Such type of graph is the basis
of GraphPlan symbolic task planner. The RPG becomes the
simplified version of the Planning Graph, i.e., delete list of
actions are ignored, so mutual exclusion relations do not
appear in the planning phase. RPG is used in the FF planner
to compute an heuristic value and helpful actions to guide the
search of the state space.

2) Computing the heuristic value: While the RPG is being
constructed, the cost of each literal l in a state-level is set based
on the cost of the action ai that generates it plus the cost of
the action’s preconditions pre(ai). Since several actions can
generate the same literal, the minimum cost is selected. The
current proposal defines the cost according to the type of action
considering physics-based information, that is:

cost(l) = min∀ai | l∈effect+(ai){cost(ai) +
∑

cost(pre(ai))}
(3)

where the cost of action ai is set to 0 for the maintenance ac-
tions (maintaining literals in the next state levels). Otherwise,
it depends on the action type, with push and pull actions costs
greater that the transit cost and being a function of the object
mass:

cost(transit) = 1 (4)

cost(pushi/pulli) =
mi

mj
(5)

where mi is the mass of the critical object being pushed/pulled
and mj is the mass of the lightest critical object. The search
procedure of the RPG is terminated at the first state-level
where all goal conditions are met. The backward search is
eventually performed from these conditions in order to find
the cheapest actions sequence. Then, the actions appearing
in the RPG plan are evaluated using a physics-based motion
planner, and the heuristic value is their total cost, as explained
in Eq. (2).

3) The Relaxed Planning Graph procedure: Algorithm 1
outlines how to compute the modified RPG and to extract the
heuristic value and the helpful actions. Its features are:
• Computing action-levels, state-levels, and the RPG plan

[lines 1-10]: The initial state-level S0 is formed based on
the information of the state S forwarded by the EHC
[line 1]. Then, action-levels Ai and state-level Si are
iteratively computed [lines 4-7] until G is satisfied, i.e.,
until a state-level satisfies all the literals defining the goal
state. At each level i, for the construction of Ai, a is
added once the preconditions appear in the level i − 1
and provided it is an applicable action [line 5], as it is
defined in Sec. IV. Maintenance actions are also appended
[line 6] that are those maintaining literals at each Si. A
state-level Si is formed based on the effect+ added by an
action-level [line 7], and the cost of literals is computed
in compCost function based on equation (3) [line 8]. When
G is satisfied, the compRPGPlan function extracts the RPG
plan π′.



• Extracting the heuristic value [lines 11-19]: This process
is responsible of evaluating the actions found in π′. A
call to motion planning is set by Q that evaluates action
along the effects in order to compute the path and the
cost C if actions effects are met [line 13]. If not, the
corresponding a is pruned from the action space and does
not apply again inside RPG planning [line 14] and the
RPG function is restarted [line 15].

• Computing helpful actions [line 20]: Finally, the helpful
actions H(S) are retrieved in the extractHActions function
(they are the actions in π′ appearing in the first action
level).

Algorithm 1 RPG(S,G,K,R)

1: S0 ← S
2: i← 0
3: while i <MaxLevels do
4: i← i+ 1
5: Ai ← {a ∈ K.A | pre(a) ⊆ Si-1& applicable(a, R)}
6: Ai ← append(maintActions(Si-1))
7: Si ← {l | l ∈ effect+(Ai)}
8: compCost(Si)
9: if G ⊆ Si then

10: π′ ← compRPGPlan()
11: h← 0
12: for each a ∈ π′ do
13: if !Q(a, C) then
14: pruneActions(a)
15: GOTO 4
16: else
17: h← h+ C
18: end if
19: end for
20: H(S)← extractHActions(π′)
21: return {h,H(S)}
22: end if
23: end while
24: return NULL

B. State space heuristic search

The FF planner searches the state space using the RPG
heuristic and employing the Enforced Hill Climbing (EHC).
The procedure of finding a feasible plan is sketched in Al-
gorithm 2. First of all, symbolic literals are evaluated based
on the offline reasoning process for obtaining R and the
initial state of the manipulation world S0 for EHC as is done
in offlineProcess [line 2]. The process of EHC [lines 3-9] is
the one used in the standard FF. From a given state, the
RPG function is called in order to compute the H(Si) and h
[line 4]. selectHAction is then responsible to return the helpful
action H ′(Si) reducing the heuristic value for the current state
[line 5]. The selected action is appended to the plan π [line 6]
and the next state is formed by Succ [line 7] for the subsequent
iteration. The iteration is carried out untill all conditions of G
are satisfied and the final plan π is eventually achieved.

Algorithm 2 Feasible plan extraction
Input: I,G, K
Output: The feasible plan π

1: π ← ∅
2: {S0,R} ← offlineProcess(I,G,K)
3: while G 6⊆ Si do
4: h(Si), H(Si)← RPG(Si,G,K,R)
5: H ′(Si)← selectHAction(H(Si), h(Si))
6: π.append(H ′(Si))
7: Si+1 ← Succ(Si, H

′(Si))
8: end while
9: return π

VII. IMPLEMENTATION AND SIMULATION RESULTS

A. Implementation

The proposed framework implementation consists of two
major layers: task-level and motion-level layers. At the task-
level layer, geometric reasoning and the OWL developed by
the Protégé editor are applied to formulate the manipulation
requirements. The task planning algorithm is implemented
using the Prolog language that is able to fetch the OWL
knowledge through the Knowrob software which is a powerful
tool to enable the access of stored knowledge by Prolog
predicates [24]. At the motion-level layer, The Kautham
Project [25] is used. It is an open source motion planning
tool based on C++ that enables to plan under kinodynamic
and physics-based constraints. It uses Open Motion Planning
Library (OMPL) [26] as its core of planning algorithms.
OMPL provides a wide set of sampling based motion planners
such as RRT and KPIECE [27]. It is also integrated with the
Open Dynamic Engine (ODE) for the dynamic simulations and
ontological knowledge as presented in [19]. Communication
among these planning layers are performed using ROS [28].

B. Simulation results

The proposal has been simulated for the example in Fig. 1
and the sequence of actions for the execution of the plan is
depicted in Fig. 4. KPIECE is used as kinodynamic motion
planner for the physics-based planning since it has the highest
success rate and computes the time-optimal solution as com-
pared to other state-of-the-art kinodynamic planners such as
RRT and EST [29]. While manipulation planning is performed,
some potential actions are found in RPG plans, being their
feasibility under investigation by the online reasoning process.
It has been observed, for instance, that when RPG planning
process is taking place, it confronts with several potential
parallel actions like Push/PullE and Push/PullF, and the one
of least cost is selected, in this case actions involving object F
which is lighter than object E. Online reasoning process
is then responsible to evaluate RPG plans and reject those
ones containing infeasible actions (such as PushC, PullF,
and PushG) because their effects cannot be satisfied. The
simulation was run on an Intel Core i7-4500U 1.80GHz CPU
with 16 GB memory and average planning time to compute
the final manipulation plan was 89 s including several calls to
the motion planner.



1 2 3

4 5 6

7 8 9

Fig. 4: Snapshots of the task execution that involves the following actions: 1) transit to C, 2) pull C, 3) transit to B, 4)
pull B, 5) transit to F, 6) push F, 7) transit to G, 8) pull G, 9) transit to Goal (The solution can be visualized in https:
//sir.upc.edu/projects/kautham/videos/manip.mp4).

VIII. CONCLUSIONS

A framework to efficiently interleave task planning with
physics-based motion planning has been presented based on
a version of the FF planner. Different types of reasoning pro-
cesses (online and offline) integrated with manipulation knowl-
edge, the geometry of the workspace, and motion planning
has been offered for evaluating actions in order to guide the
task planning phase, allowing to find low-cost feasible plans.
The present framework has been implemented and simulated
with a manipulation problem including a mobile manipulator
and different type of fixed as well as manipulatable obstacles
with various features, validating the proposal. Future work is
centered in enhancing the action space with pick and place
actions according to the robot knowledge and to incorporate
uncertainty inside the task-level.

REFERENCES

[1] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel,
“Semantic attachments for domain-independent planning systems,” in
Towards Service Robots for Everyday Environments. Springer, 2012,
pp. 99–115.

[2] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras, “Combin-
ing high-level causal reasoning with low-level geometric reasoning and
motion planning for robotic manipulation,” in Robotics and Automation
(ICRA), 2011 IEEE International Conference on. IEEE, 2011, pp.
4575–4581.

[3] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in Robotics and Automation (ICRA), 2014
IEEE International Conference on. IEEE, 2014, pp. 639–646.

[4] E. Plaku and G. D. Hager, “Sampling-based motion and symbolic action
planning with geometric and differential constraints,” in Robotics and
Automation (ICRA), 2010 IEEE International Conference on. IEEE,
2010, pp. 5002–5008.

[5] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in Robotics and Automation (ICRA), 2011 IEEE
International Conference on. IEEE, 2011, pp. 1470–1477.

[6] A. K. Pandey, J.-P. Saut, D. Sidobre, and R. Alami, “Towards planning
human-robot interactive manipulation tasks: Task dependent and human
oriented autonomous selection of grasp and placement,” in Biomedical
Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS
International Conference on. IEEE, 2012, pp. 1371–1376.

[7] L. de Silva, A. K. Pandey, M. Gharbi, and R. Alami, “Towards
combining HTN planning and geometric task planning,” arXiv preprint
arXiv:1307.1482, 2013.

[8] M. Gharbi, R. Lallement, and R. Alami, “Combining symbolic and
geometric planning to synthesize human-aware plans: toward more
efficient combined search.” in Intelligent Robots and Systems (IROS),
2015 IEEE/RSJ International Conference on. IEEE, 2015, pp. 6360–
6365.

https://sir.upc.edu/projects/kautham/videos/manip.mp4
https://sir.upc.edu/projects/kautham/videos/manip.mp4


[9] F. Gravot, S. Cambon, and R. Alami, “aSyMov: a planner that deals
with intricate symbolic and geometric problems,” in Robotics Research.
The Eleventh International Symposium. Springer, 2005, pp. 100–110.

[10] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” The International Journal of
Robotics Research, vol. 28, no. 1, pp. 104–126, 2009.

[11] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Ffrob: An efficient
heuristic for task and motion planning,” in Algorithmic Foundations of
Robotics XI. Springer, 2015, pp. 179–195.

[12] J. Hoffmann and B. Nebel, “The ff planning system: Fast plan generation
through heuristic search,” Journal of Artificial Intelligence Research, pp.
253–302, 2001.

[13] A. L. Blum and M. L. Furst, “Fast planning through planning graph
analysis,” Artificial intelligence, vol. 90, no. 1, pp. 281–300, 1997.

[14] M. Tenorth and M. Beetz, “A unified representation for reasoning about
robot actions, processes, and their effects on objects,” in Int. Conf. on
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ. IEEE, 2012,
pp. 1351–1358.

[15] D. Di Marco, P. Levi, R. Janssen, R. van de Molengraft, and A. Perzylo,
“A deliberation layer for instantiating robot execution plans from abstract
task descriptions,” in Proc. of the Int. Conf. on Automated Planning
and Scheduling: Workshop on Planning and Robotics (PlanRob). AAAI
Press, 2013.

[16] M. Stilman and J. J. Kuffner, “Navigation among movable obstacles:
Real-time reasoning in complex environments,” International Journal
of Humanoid Robotics, vol. 2, no. 04, pp. 479–503, 2005.

[17] S. Zickler and M. Veloso, “Efficient physics-based planning: sampling
search via non-deterministic tactics and skills,” in Proc. of The 8th Int.
Conf. on Autonomous Agents and Multiagent Systems-Volume 1, 2009,
pp. 27–33.

[18] S. M. Lavalle and J. J. Kuffner, “Rapidly-Exploring Random Trees:
Progress and Prospects,” Algorithmic and Computational Robotics: New
Directions, pp. 293–308, 2001.

[19] Muhayyudin, A. Akbari, and J. Rosell, “Ontological physics-based
motion planning for manipulation,” in Proc. of IEEE Int. Conf. on
Emerging Technologies and Factory Automation (ETFA). IEEE, 2015,
pp. 1–7.

[20] A. Akbari, Muhayyudin, and J. Rosell, “Task and motion planning using
physics-based reasoning,” in Proc. of the IEEE Int. Conf. on Emerging
Technologies and Factory Automation. IEEE, 2015, pp. 1–7.

[21] A. Akbari, Muhayyuddin, and J. Rosell, “Reasoning-based evaluation of
manipulation actions for efficient task planning,” in Robot 2015: Second
Iberian Robotics Conf. Springer, 2016, pp. 69–80.

[22] Stanford, “Protégé,” http://protege.stanford.edu/, 2007.
[23] D. McGuinness, F. Van Harmelen et al., “Owl web ontology language

overview,” W3C recommendation, vol. 10, no. 10, p. 2004, 2004.
[24] M. Tenorth and M. Beetz, “Knowrob knowledge processing for au-

tonomous personal robots,” in Int. Conf. on Intelligent Robots and
Systems (IROS). IEEE, 2009, pp. 4261–4266.

[25] J. Rosell, A. Pérez, A. Aliakbar, Muhayyuddin, L. Palomo, and
N. Garcı́a, “The Kautham Project: A teaching and research tool for
robot motion planning,” in Proc. of the IEEE Int. Conf. on Emerging
Technologies and Factory Automation. IEEE, 2014, pp. 1–8.

[26] I. Sucan, M. Moll, L. E. Kavraki et al., “The open motion planning
library,” Robotics & Automation Magazine, IEEE, vol. 19, no. 4, pp.
72–82, 2012.

[27] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning by
interior-exterior cell exploration,” in Algorithmic Foundation of Robotics
VIII. Springer, 2010, pp. 449–464.

[28] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, vol. 3, 2009,
p. 5.

[29] Muhayyuddin, A. Akbari, and J. Rosell, “Physics-based motion plan-
ning: Evaluation criteria and benchmarking,” in Robot 2015: Second
Iberian Robotics Conf. Springer, 2016, pp. 43–55.


	INTRODUCTION
	Problem Formulation and Solution Overview
	Scope and a motivating example
	Problem Formulation
	Solution Overview

	Manipulation Semantic Knowledge
	Reasoning on symbolic literals using knowledge and geometric information
	Physics-based Motion Planning
	Task Planning with Physics-based Heuristics
	Relaxed Planning Graph
	Computing the Relaxed Planning Graph
	Computing the heuristic value
	The Relaxed Planning Graph procedure

	State space heuristic search

	Implementation and simulation results
	Implementation
	Simulation results

	Conclusions
	References

