
Learning Action-oriented Grasping for Manipulation

Muhayy Ud Din1, M Usman Sarwar2, Imran Zahoor2, Wajahat M Qazi2 and Jan Rosell1
1Institute of Industrial and Control Engineering (IOC)

Universitat Politècnica de Catalunya (UPC) – Barcelona Tech, Spain.
2Department of Computer Science

COMSATS University Islamabad – Lahore Campus, Pakistan.

Abstract— Complex manipulation tasks require grasping
strategies that simultaneously satisfy the stability and the
semantic constraints that have to be satisfied for an action to be
feasible, referred as action-oriented semantic grasp strategies.
This study develops a framework using machine learning
techniques to compute action-oriented semantic grasps. It takes
a 3D model of the object and the action to be performed as
input and provides a vector of action-oriented semantic grasps.
We evaluate the performance of machine learning (particu-
larly classification techniques) to determine which approaches
perform better for this problem. Using the best approaches, a
multi-model classification technique is developed. The proposed
approach is evaluated in simulation to grasp different kitchen
objects using a parallel gripper. The results show that multi-
model classification approach enhances the prediction accuracy.
The implemented system can be used as to automate the data
labeling process required for deep learning approaches.

I. INTRODUCTION

Robotic grasping is an essential component in the perfor-
mance of manipulation tasks. It should take into account the
way to hold an object in order to execute a given manipula-
tion action. Classical approaches to the grasp planning con-
sider robotic grasping as a pure geometric problem, focusing
on optimizing the grasp quality based on form closure or
force closure [1] [2] [3] [4]. These quality measures provide a
well established mathematical framework for grasp analysis.
The main aim of these approaches is to hold the objects
with the robot gripper in such a way that it should not drop.
However, in practical scenarios, the goal of the grasp is to
perform a particular task such as pick a can to pour the
drink in a glass as shown in Fig 1-a. In this context, a grasp
planner that just satisfies the stability constraints may not be
able to satisfy the task related requirements. This process of
acquiring task related constraints can be incorporated through
learning techniques.

Recently, deep learning approaches have gained popularity
due to their effectiveness and accuracy. For grasping appli-
cations, these approaches usually take depth images as input
and return a set of grasp points such that if fingers are placed
there, a stable grasp is guaranteed. Deep learning-based
approaches are data hungry [5] and require a huge amount
of labeled data for an effective learning during the training
process. In case of learning stable grasps, the data could be
generated in a relatively easy way by parameterizing stable

This work was partially supported by the Spanish Government through
the project DPI2016-80077-R.

a b

Fig. 1: Shows the valid and invalid grasping pose for pick-to-
pour action computed by the proposed framework: a) shows
the valid grasping pose. b) shows the invalid grasping pose.

grasps. On the contrary, for the action-oriented grasping, the
requirements to satisfy the action related constraints depend
on the type of the action and the object geometry and are
therefore difficult to generalize. A grasp may be valid for
performing the particular action pick to clean and the same
grasp may be not valid for the action pick to pour (as shown
in Fig. 1-b) due to the action constraints. It is therefore
challenging to find a way to prepare data in an automatic
way to apply deep learning based approaches.

This study uses learning techniques to develop an action-
oriented semantic grasp generation system, i.e., a system that
learns how to grasp an object to perform a particular action.
It can be used to automate the process of dataset generation
for vision-based task-oriented deep learning approaches. In
addition to this, it can also be used as a stand alone semantic
grasp generation system for model-based approaches, as it is
presented in this paper.

The main contribution of this study is to use machine
learning techniques to learn how to generate action-oriented
semantic grasps. We perform a benchmarking to analyze
which machine learning approaches are best fit for this par-
ticular problem. In order to increase the prediction accuracy,
we choose the set of best techniques (those that have highest
prediction accuracy in benchmarking) and develop a multi-
model prediction approach, which applies a voting scheme
to decide the feasibility of grasps according to the action
to be performed. Finally, to make the approach complete, a
motion planner is called to execute the grasp with the best
score.

Rest of the paper is structured as follow. Sec. II formulates
the problem and provides the overview of the proposed

978-1-7281-0302-0/19/$31.00 ©2019 IEEE 1575

solution. Sec. III explains the proposed approach and Sec. IV
explain the results. Finally, Sec. V concludes the work.

II. PROBLEM STATEMENT AND SOLUTION OVERVIEW

A. Problem statement

Let G be the grasp space representing the set of all possible
force closure grasps for a robotic-gripper R, and let the
graspable objects in the robot workspace be represented
as O = {o1, . . . , on}. A grasp g ∈ G is parameterized as
g = (x, y, z, qx, qy, qz.qw), representing the position and
orientation (quaternion) of the gripper w.r.t the object frame
in 3D space. It is computed in such a way that if the robot
closes the fingers from this pose, it guarantees force closure
grasp.

Let also the action space A = {a1, . . . , an} contain the set
of all possible actions that a robot can perform with R. The
grasp feasibility evaluation function F , represented in Eq.(1),
evaluates the feasibility of the given grasp g ∈ G against the
given action a ∈ A for the particular object o ∈ O and
returns valid or invalid, depending on whether the grasp is
feasible or infeasible (which includes the cases when it is
not applicable to the object).

F : G ×A×O → {valid, invalid} (1)

In this work we will consider that the robot is per-
forming manipulation tasks in a kitchen environment with
a set of kitchen objects Okitchen (e.g., cup, plate, and
bottle) such that Okitchen ⊆ O. The manipulation task
involves the set of actions Akitchen = {grasp to clean,
grasp to serve, grasp to pour, grasp to push, grasp to pull}
such that Akitchen ⊆ A.

The, the problem is to take as input an action a ∈ Akitchen,
the 3D model of the of the robot gripper R, and an object
o ∈ Okitchen, and generate a set of force-closure grasps,
use the grasp the feasibility evaluator F to evaluate their
feasibility for the given action a, returning the best ones, in
such a way that if the robot executes one of these grasps,
the corresponding manipulation action will be able to be
successfully executed.

B. Solution overview

The solution to above stated problem is divided in two
phases: a learning phase and an application phase, as shown
in Fig. 2:

1) Learning phase: It generates a set of force closure
grasps {go} ∈ G for each object o ∈ Okitchen using
a grasping simulator. In order to generate the training
dataset, these grasps are labeled as valid or invalid as a
function of the actions in Akitchen. The training dataset
is then used by the machine learning techniques (such
as decision trees classifiers) to learn the behavior of
the function F .

2) Application phase: During this phase a set of arbitrary
grasps is generated for the objects that are in the
workspace using the grasping simulator, and their
feasibility is evaluated using the learned function F .

Fig. 2: Framework for computing action-oriented semantic
grasps. Application phase shows the set of computed grasps
to perform grasp to pour action.

Finally, the set of feasible grasps are forwarded to the
motion planner to compute the robot path.

III. LEARNING ACTION-ORIENTED GRASPING

This section provides a detailed description of the methods
used during the learning and application phases.

A. Training data generation

1) Grasp synthesis: To generate the training dataset for
learning how to compute action-oriented semantic grasps,
a stable grasp generation system is required. The GraspIt!
(a simulation tool for grasp planning and visualization) is
used for this purpose. The training dataset is prepared using
20 kitchen objects. The meshes of these objects are loaded
into the GraspIt! (one by one) along with the model of the
parallel gripper of the TIAGo robot. Since the actions in
Akitchen are usually applied to objects that are placed on a
stable support, bottom grasps are discarded due to collisions
with the supporting surface. In order to avoid such grasps,
a stable supporting surface, such as a table, is introduced
in GraspIt! in order to be considered as an obstacle during
grasp planning process.

The grasps are generated using the eigen grasp planner [6].
It considers the gripper as a free-flying robot and randomly
samples the poses of the gripper around the object to obtain
the valid grasps. In order to ensure that the resultant grasps
are force closure, it uses an energy function [6] as a quality
measure (the lesser the energy the better the grasp). Only
those grasps that have the energy score below a given
threshold are kept. The planner runs for 10 seconds for each
object and generates around 70,000 grasps. Among them the
first 20 grasps (according to the energy function) are chosen
for the training dataset.

2) Data labeling: The generated grasps are then manually
labeled to prepare the training dataset. Each generated grasp
for the given object o ∈ Okitchen is evaluated corresponding to
all actions in Akitchen and labelled as valid or invalid for each
action. The feature vector (shown in Fig. 3) consists of: 1) a

1576

Fig. 3: Feature Vector

grasp, represented as g = (x, y, z, qx, qy, qz, qw) representing
the pose of the gripper in the object frame, 2) the name of
the object family such as cup, glass or jug, 3) the name of
the action in Akitchen such as grasp-to-pour, 4) the class label
such as valid or invalid.

The non-numeric attributes of the dataset are transformed
to numerical values. For instance, if object class contains
20 number of objects, the label encoder transforms these 20
non-numeric values to a set of numeric values {0, 1, . . . , 19},
each value corresponding to a particular object. This label
encoding scheme is applied to all the non-numeric attributes
of feature vector.

B. Learning phase

The supervised learning is applied using the classification
techniques over the generated dataset. The dataset is splitted
into the training dataset (containing 80% of the data) and test
dataset (containing 20% of the data). The learning is perform
using the scikit-learn-https://scikit-learn.org/
stable/, a Python-based library for machine learning
algorithms. To determine which classification techniques
perform better for this particular type of data, a benchmark-
ing is performed using the most commonly used classifi-
cation techniques. These techniques are: Gradient Boosting
Classifier (GBC), Gaussian Naive Bayes Classifier (GNC),
Linear Discriminant Analysis (LDA), K-Neighbors Classifier
(KNC), Decision Tree Classifier (DTC), Bernoulli Naive
Bayes Classifier (BNC) Linear Support Vector Classifier
(LSC), Random Forest Classifier (RFC), and Logistic Re-
gression Classifier (LRC), the detailed description of these
algorithms can be found in [7]. The prediction accuracy
of these techniques over the test dataset is compared. The
results of the comparison show that GBC, DTC, and RFC
have the highest accuracy score (above 90%) as shown in
Fig. 4:

• The Decision Tree Classifier (DTC) uses a tree repre-
sentation to solve the problem. Attributes correspond
to internal nodes of the tree and leaf nodes correspond
to the labels of the classes. DTC creates a model that
predicts the value of the target variable by learning
simple decision rules extracted form the data features.

• The Random Forest Classifier (RFC) develops multiple
decision trees. These trees are then merged together to
obtain stable an accurate prediction.

• The Gradient Boosting Classifier (GBC) develops a
prediction model in terms of an ensemble of weak
prediction models (decision trees are used as weak
prediction models). The model is build in a stage-wise
fashion and generalizes by optimizing an arbitrary cost
function.

Fig. 4: Prediction accuracy comparison on testdata for bench-
marking.

These three models are saved to build the multi-model
classifier that is used during the application phase.

C. Application phase

1) Grasp feasibility evaluation: The application phase can
be seen as a grasp filtration module that takes a vector of
arbitrary grasps, generated by the GraspIt! for a particular
object o ∈ O. For each generated grasp, the grasp evaluation
module generates an input vector that includes a grasp, name
of the object class and action to be performed. These input
vectors are passed to the multi-model classifier that classifies
each input vector using the three best classifiers that are
selected according to the process explained in Sec. III-B.
To determine the set of feasible grasps for the particular
action, the voting scheme is applied to the outputs of these
classifiers. It evaluates the result of each classifier internally
and labels the grasp as valid if at least two classifiers classify
it as valid and invalid otherwise.

2) Motion planning: Once the set of feasible grasps is
selected, motion planning module is responsible for com-
puting the collision-free path to move the gripper from the
given initial state to the goal state (i.e., computed feasible
grasping pose). To compute the goal configurations for
motion planner, the transfer function T (g)→ Th

o transforms
each grasp g to an homogeneous transformation in the object
reference frame. To set a motion planning query, the gripper
pose is first computed into the word frame using Eq.(2),

Tw
h = Tw

o . (Th
o)

−1
, (2)

where, Tw
o and Tw

h represent the object and gripper poses
in the world reference frame, respectively. The arm config-
uration of the manipulator for each grasp is computed by
solving the inverse kinematics for the corresponding Tw

h .
These configurations are then passed to the collision checker
to obtain the valid goal configurations.

Motion planning is performed using The Kautham
Project [8], a C++-based tool for motion planning. It

1577

provides the sampling based motion planners to plan un-
der geometric, differential and physics-based constraints.
Open Motion Planning Library (OMPL-https://ompl.
kavrakilab.org/) is used as a core set of sampling-
based motion planners. RRTConnect [9], a sampling-based
motion planner is used to compute the collision-free path to
move the robot for performing the required action.

IV. EVALUATION

A. Simulation scenarios

The proposed approach is tested by grasping several
kitchen objects to perform different actions. For instance,
an example scenario consists of the TIAGo robot operating
in a kitchen environment, depicted in Fig. 1. The goal is to
execute grasp-to-pour, grasp-to-clean actions for coke-can
i.e., grasp the coke-can for pouring the drink into the glass
and grasp the coke-can to through it into the bin, respectively.

Fig. 5: Comparison of prediction accuracy in the application
phase.

The simulation setup is generated using The Kautham
Project. The communication between Graspit!, scikit-learn,
and The Kautham Project is performed using ROS-(http:
//wiki.ros.org/.

B. Classification accuracy during application phase

The key contribution of this approach is the action-oriented
classification of the grasping poses. We use multi-model
classification approach that selects the best classifiers (having
higher prediction accuracy on test dataset) and encapsulate
them in a single algorithm which applies the voting scheme
over the prediction of those models. Fig. 5 shows the accu-
racy comparison of the individual classifier and the multi-
model classifier. The multi-model classifier enhances the
overall prediction accuracy of the system. The true positive,
true negative, false positive and false negative predictions of
each approach are depicted in Fig. 6 in terms of confusion
matrices.

The results show that the proposed approach (multi-model
classifier) has high prediction accuracy during the application
phase. Each grasp is evaluated as a function of the action to
be performed and the type of the object, to label it as valid or
invalid. The multi-model classifier can be used to automate
the data labeling process for deep learning based approaches.

a
b

c d

Fig. 6: Confusion matrices of the selected classifiers a)
decision tree classifier, b) gradient boosting classifier, c)
random forest classifier, d) multi model classifier.

V. CONCLUSIONS

This study proposed an approach to generate task-oriented
semantic grasps using machine learning techniques. To an-
alyze which machine learning approaches are suitable for
this problem, a benchmarking study is performed. It shows
that Decision Trees Calssifiers (DTC), Gradient Boosting
Classifiers (GBC) and Random Forest Classifiers (RFC) have
the highest accuracy to address this problem. A multi-model
classification approach is proposed that uses these three
classifiers and applies a voting scheme for classification. The
proposed approach is tested with various scenarios, the multi-
model classifier shows even a better accuracy.

As an ongoing work, this approach is being used to auto-
mate the data labeling process for deep learning approaches
for manipulation planning, in such a way that from an image
of an object and the type of action to be performed with it,
the system returns the grasp to be performed.

REFERENCES

[1] V.-D. Nguyen, “Constructing force-closure grasps,” The International
Journal of Robotics Research, vol. 7, no. 3, pp. 3–16, 1988.

[2] C. Ferrari and J. F. Canny, “Planning optimal grasps.” in ICRA, vol. 3,
1992, pp. 2290–2295.

[3] A. Rodriguez, M. T. Mason, and S. Ferry, “From caging to grasping,”
The International Journal of Robotics Research, vol. 31, no. 7, pp.
886–900, 2012.

[4] M. A. Roa and R. Suárez, “Grasp quality measures: review and
performance,” Autonomous Robots, vol. 38, no. 1, pp. 65–88, Jan 2015.

[5] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning— the mit
press,” Cambridge, Massachusetts, 2016.

[6] M. Ciocarlie, C. Goldfeder, and P. Allen, “Dimensionality reduction
for hand-independent dexterous robotic grasping,” in 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2007, pp.
3270–3275.

[7] M. Bowles, Machine learning in Python: essential techniques for
predictive analysis. John Wiley & Sons, 2015.

[8] J. Rosell, A. Pérez, A. Aliakbar, Muhayyuddin, L. Palomo, and
N. Garcı́a, “The kautham project: A teaching and research tool for
robot motion planning,” in Proc. of the IEEE Int. Conf. on Emerging
Technologies and Factory Automation, 2014.

[9] J. J. Kuffner Jr and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in ICRA, vol. 2, 2000.

1578

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

