

A COMPUTER-AIDED SIMULATION ANALYSIS TOOL FOR SIMAN
MODELS AUTOMATICALLY GENERATED FROM PETRI NETS

Albert Peñarroya, Francesc Casado and Jan Rosell

Institute of Industrial and Control Engineering
Technical University of Catalonia, Barcelona, Spain

E-mail: jan.rosell@upc.edu

KEYWORDS
Petri nets, SIMAN, Computer-aided tools.

ABSTRACT

The analysis of the logic correctness of the system and
its performance evaluation are usually carried out using,
respectively, the Petri nets formalism and the discrete-
event simulation. Several tools exist for both. The
Platform Independent Petri Net Editor (PIPE) is a free
software tool developed in Java for the modeling,
simulation and qualitative analysis of Petri nets. It has
been designed with an open philosophy so that
extensions can be easily incorporated. SIMAN is one
of the first discrete-event simulation languages
developed. It has extensively proven its power. This
paper first presents a module for the PIPE software that
allows the automatic generation of SIMAN code from a
Petri net. Then, a tool is proposed to aid the
performance analysis of manufacturing systems from its
SIMAN model. These tools are designed as a support
for students in the understanding of the simulation
methodology.

INTRODUCTION

The two main objectives when analyzing a
manufacturing system are the evaluation of the logical
correctness (i.e. the qualitative analysis) and the
evaluation of its performance (i.e. quantitative analysis).
Petri nets formalism and discrete-event simulation are
used to carry out these objectives and, therefore, both
must be included in the engineering students’ curricula
(Desel, 2000). Taking into account this, the objective of
this paper is to introduce an aid to help students in the
understanding of the use of simulation techniques as a
methodology for the analysis of manufacturing systems.

Petri nets are a formalism that allows the modelling of
systems involving concurrency, resource sharing,
synchronization and conflict, and allows the validation
of the correctness of the system by analyzing the
qualitative properties of the net modelling the system
(Murata, 1989). There are several software tools (see
the Petri Nets World web www.informatik.uni-
hamburg.de/ TGI/PetriNets/tools/) that allow the
modeling, simulation and analysis of Petri nets.
The Platform Independent Petri Net Editor (PIPE,
http://pipe2.sourceforge.net/), is a Java based, open

source, graphical tool for drawing and analyzing Petri
nets developed at the Department of Computing at
Imperial College London (Figure 1). Some of its
available modules include invariant analysis,
simulation, state space analysis and comparison and
classification. New modules can be developed and
easily incorporated.
SIMAN is a general purpose simulation language which
incorporates special purpose features for modeling
manufacturing systems (Pedgen, 1986). It is one of the
best and first developed simulation languages
extensively used. Taking into account this and the use
of the extensibility property of PIPE, this paper will
introduce both:

1. The development of a PIPE module able to

automatically generate SIMAN code from a Petri
net model of a system.

2. The development of a software tool to aid in the

performance analysis of a system described with its
SIMAN model. The tool must help the user in the
specification of the warm-up period, the
computation of the number of replication required,
the validation process, the comparison between
models, and the specification and execution of
factorial designs.

As extra requirements the developed tools must be open
source, developed in Java, and must provide the
capability of executing the SIMAN models on a remote
simulation server through the WEB. This will allow the

Figure 1 PIPE GUI

sharing of software and hardware resources over the
Internet, independent of the user’s platform (Guru et al.,
2000).
After this introduction the paper is structured around
two main sections describing, respectively, the PIPE
module and the software tool for the simulation
analysis.

PLATFORM INDEPENDENT PETRI NET
EDITOR

Description
The Platform Independent Petri Net Editor (PIPE) is a
graphical tool for the modelling and analysis of ordinary
Petri nets. It allows invariant analysis, state space
analysis and comparison and classification. PIPE also
offers simulation capability that illustrates the token
game through the evolution of the net markings.

Its modular architecture and open source philosophy
allows the development of new features. In this paper
we propose a module to automatically generate SIMAN
code from Petri nets. This module requires some kind of
coloring to the ordinary Petri nets managed by PIPE, as
explained in the next subsection.

SIMAN code generation module
In order to include this new module, the following
changes have been introduced to the basic PIPE
functionality. First, the capacity to distinguish between
different types of places: type-A places to represent
activities, type-B places to represent finite resources
like machines or robots, type-C places for control
places, and type-D places to represent the system input
or variable resources like pallets or fixtures. Second, the
capacity to introduce code into the net places in order to
specify some parameters and values needed when
translating to SIMAN.

In order to generate SIMAN code from a Petri net first
it is necessary to specify the type of places and the
initial marking. Then the code associated to each place
must be introduced. For type-A places it is necessary to
specify the delay time of the activity; for type-B places
the time between failures and the downtimes; for type-C
places the group to which they pertain since type-C
places are grouped in sets; for type-D places the time
between arrivals whenever they represent the system
input. Moreover if there is a conflict in type-A or type-
D places it is necessary to specify how it is to be solved
(i.e. by chance or by the type of entity which is defined
in the corresponding type-D place).

Once the Petri net is defined, the SIMAN code
generation module can be executed (Figure 2). The
module first makes a validation of the net in order to
avoid future parsing problems. This validation consists
in the following verifications:

1. Type-A places: Existence of at least an input arc
and initial marking set to zero.

2. Type-B places: Non-null initial marking.

3. Type-C places: Specification of a family group

and non-null initial marking per group.

4. Type-D places: Existence of at least one type-D
place, existence of at least one output arc and
either the existence of a non-null initial marking
or the specification of the time between arrivals.

5. Non-existence of isolated transitions or places.

6. Non-existence of repeated arcs.

7. Non-existence of multiple input arcs if there are

non-unitary weights.

8. Non-existence of multiple output arcs if there are
non-unitary weights.

Figure 2 SIMAN Code Generation Module

Steps 1 to 5 are strictly necessary for the correct parsing
to a SIMAN model. Step 6 solves a PIPE bug, and steps
7 and 8 greatly simplify the parsing process.

Whenever one of these steps fails, the module warns the
user indicating where the problem is located. Figure 2
shows a case where there is a problem with the initial
marking of type-B places. Once the problems are
solved, the Generate Code button is activated and when
pressed the SIMAN code is generated and a window is
opened with the contents of the MOD and EXP SIMAN
files which are, respectively, the model and the
experiment components that correspond to the logic and
data in the model. These files can then be stored to disk.

An Example
The following simple example illustrates some of the
features of the SIMAN code generation module. The
Petri net is shown in Figure 3. It is a cyclic net where
type-D place P0 represents the availability of three parts
to be processed. Type-A places P1, P2 and P4 represent
three different activities. Parts are processed either by
P1 and P4 or by P2 and P4. Activity P2 requires the use
of the resource represented by type-B place P3.

The following code is introduced into the net places:
Place P0: Code indicating that the conflict is solved by
chance (20% of parts go to place P1; 80% to place P2).

decide = probability
@T0=0.8
@T1=0.2

Place P1: Code indicating the delay time.

delay = EXPO(1.1)

Places P2 and P4: Code indicating the delay time,
EXPO(0.5) and EXPO(2), respectively, in a similar way
as place P1.
Place P3: Code indication the time between failures and
the downtime.

failures
@ timeON = GAMMA(7,15)
@ timeOFF = GAMMA(2,3)

The SIMAN code obtained is shown in Table 1 and
Table 2. The MOD file includes the program flow
while the EXP file includes the definitions of the
variables and resources.

Table 1. SIMAN MOD File

Table 2. SIMAN EXP File

Figure 3 Example Net
1$ CREATE, 3,HoursToBaseTime(0.0),Entity P0:
 HoursToBaseTime(1),1: NEXT(2$);
2$ ASSIGN: Create P0.NumberOut = Create
 P0.NumberOut + 1:NEXT(3$);
3$ BRANCH, 1:
 With,0.8,4$,Yes:
 With,0.2,5$,Yes;
4$ DELAY: 0: NEXT(6$);
5$ QUEUE, Seize T1.Queue;
7$ SEIZE, 2,Other:
 Resource P3, 1:NEXT(8$);
6$ DELAY: EXPO(1.1):NEXT(9$);
9$ DELAY: 0: NEXT(10$);
8$ DELAY: EXPO(0.5):NEXT(11$);
11$ RELEASE:
 Resource P3, 1:NEXT(10$);
10$ DELAY: EXPO(2):NEXT(12$);
12$ DUPLICATE:
 1,3$;
 ASSIGN: Dispose T4.NumberOut=Dispose
 T4.NumberOut+1;
 DISPOSE: Yes;

PROJECT, "Unnamed Project", "Siman Code
 Generation" ,,,No,Yes,Yes,Yes,No,No,No,No,No;
FAILURES:
 Failure 0,Count(GAMMA(7,15),GAMMA(2,3));
RESOURCES:
 Resource P3,Capacity(1),,,,, FAILURE(Failure
0,Ignore),;
REPLICATE, 10,,HoursToBaseTime(160),Yes,Yes,,,,
 24,Hours,No,No,,,Yes;
VARIABLES:
 Create P0.NumberOut, CLEAR(Statistics), CATEGORY
 ("Exclude"): Dispose T4.NumberOut,
CLEAR(Statistics),
 CATEGORY("Exclude");
ENTITIES:
 Entity P0;
QUEUES:
 Seize T1.Queue,FIFO,,AUTOSTATS(Yes,,);
DSTATS:
 Create P0.NumberOut, aCreate P0.NumberOut:
 Dispose T4.NumberOut,aDispose T4.NumberOut;

CASA - COMPUTER AIDED SIMULATION
ANALYSIS

Specification
The CASA software has as objective the aid in the
performance analysis of discrete-event simulations. The
program has different features like model validation or
factorial design. The results of the simulations are
obtained by executing the SIMAN models, or in some
cases they can be provided by data text files. The
ARENA simulation software (www.arenasimulation.
com) must be available in order to use its SIMAN
compiler, linker and simulation programs. The input
SIMAN files can be either generated by the PIPE
module described in the previous section or by the
ARENA software.

The CASA software has the following options: model
simulation, specification of the warm-up period,
computation of the number of replications required,
model validation, comparison between two models and
factorial design. Theoretical expressions used are
obtained from (Banks et al. 1996) .

Model simulation
Once the SIMAN model is loaded, the simulation utility
allows the simulation of the model. A command
window is opened where the different calls to the
compilation, linking and execution programs are
automatically performed. The output data is shown in
text format.

Specifying the warm-up period
This option allows the determination of the warm-up
period. The MOD file is shown to the user where he
specifies the variable to be used for determining the
warm-up period. It can either be a variable computed at
the exit of a block (e.g. parts produced) or a variable
computed between to blocks (e.g. time-in-queue or
WIP). In either case, the software allows the use of the
moving average method to filter the data, using a
chosen window size w:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=
−

−+=
+=

∑

∑

−

−−=

+

−=

+

wiif
i

Y

wmwiif
w

Y

Y
i

is
si

w

ws
si

i

,...,1
12

,...,1
12

1

)1(

~

~

~
 (1)

Computing the number of replications required
This option computes the number of replications needed
in order to obtain confidence intervals with a specified
precision. If the desired half-width of the confidence
interval is ε, then the following iterative procedure is

programmed to compute the required number of
replications:

1) Starting with R0 replications, estimate σ2 by S0
2:

2
0)1(,

2

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
≥

−

ε

α St
R

R
 (2)

2) Estimate a first value of R by substituting

)1(,

2
−R

tα by
2
αz in expression (2).

3) Increment R until (2) is satisfied (using
)1(,

2
−R

tα).

The program shows a text window with the final result
and all the intermediate results of each iterative step
performed.

Model Validation
This option is an aid for the validation of the model.
The real system data used for the validation is the
average of one of the performance measures selected by
the user (μ0). The statistical t-test is performed . First it
determines:

nS
y

t
/

0
0

μ−
= (3)

Then, if

)1(,
2

0
−

<
n

tt α the model is accepted with a

probability α of having rejected a valid model. Then,
the probability of having accepted a non-valid model is
computed as (Ferris et al. 1946):

Figure 4 Warm-up Period Panel

() () ⎥
⎦

⎤
⎢
⎣

⎡

+−
−+

⎟
⎠
⎞

⎜
⎝
⎛

= ∑
∞

=

−

2

2

0

2

2
1

1
;1

2
1,2/1

!
2
1

2

ε

ελ
λ

β
tn

t
nrI

r

n
e

r

r

n

(4)
where λ is the allowed difference between the model
and system means, n is the number of replications and
I(p,q;x) is the incomplete beta function. This value is
computed graphically in (Banks, 1996).

The user can specify a desired maximum risk β and then
the program outputs the number of replications required
to achieve it.

Comparison between two models
This option allows the comparison between the loaded
SIMAN model and another one that is loaded when the
comparison module is opened. The comparison is done
considering independent sampling. The user specifies
which variables are to be compared and then the
simulation of the models is performed. Then the
confidence interval of the difference of means is
computed:

 (() ()1 2 1 2,
2

· . .Y Y t s e Y Yα ν
− ± −) (5)

Whenever this confidence interval contains zero there is
not strong statistical evidence that one system design is
better than the other.

To compute this confidence interval, the test of equal
variances is performed. This test uses the Fisher-
Snedecor distribution, i.e. if :

 1,1,2
1

2
2

21 −−<= RRF
S
SF α (6)

then both variances are considered equal. In this case
the standard error of the difference is computed as
follows:

() ()
2

·1·1

21

2
22

2
11

−+
−+−

=
RR

SRSRSP (7)

1 2

1 1. . ·Ps e S
R R

= + (8)

And the degrees of freedom are: 221 −+= RRν .

Otherwise, when variances are considered unequal,
standard error of the difference is computed as follows:

2 2
1 2

1 2

. . S Ss e
R R

= + (9)

and the degrees of freedom are:

() () ⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎢

⎡

−

⎟
⎠
⎞

⎜
⎝
⎛

+
−

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

11 2

2

2

2
2

1

2

1

2
1

2

2

2
2

1

2
1

R

R
S

R

R
S

R
S

R
S

ν (10)

As in other program options, all the computations are
shown to the user in a text window.

Factorial design
The last option of the program allows the performance
of a factorial design using up to six factors. Each factor
is assigned two values. The user selects the number of
factors to consider and introduces two values to be
considered for each of them. The program automatically
computes all the possible combinations (design points)
and executes the corresponding replicates of each one.

This option graphically outputs the confidence intervals
of each of the principal effects of the chosen factors
(Figure 6). When the confidence interval does not
include zero then the factor is considered significant.

Figure 6 Detail of the Factorial Results

CONCLUSIONS

The availability of software tools for the understanding
of the simulation methodology in the analysis of
manufacturing systems is a key aspect for engineering
studies. This paper has proposed two tools that cover
both Petri nets and discrete-event simulation.

First, a module that automatically generates SIMAN
code from Petri nets has been incorporated to the
Platform Independent Petri Net Editor (PIPE), an open
source graphical tool for drawing and analyzing Petri
nets. Although PIPE allows the simulation of Petri nets,
the translation to SIMAN allows a better simulation of
manufacturing systems since the new incorporated
module permits, among other features, the introduction
of different time distributions or the definition of
failures. Moreover, the obtained SIMAN code facilitates
the use of the second tool for the performance analysis
of the system.

The second tool introduced in this paper is the software
CASA (Computer Aided Simulation Analysis). It has
been developed as an aid in the performance analysis of
manufacturing systems modeled using SIMAN. It has
several features not encountered in other simulation
packages, like the capability of performing factorial
designs or model validation.

Both tools are currently being used in undergraduate
courses at the Industrial Engineering School of
Barcelona (Technical University of Catalonia). They
are available at lafarga.cpl.upc.edu/.

REFERENCES

Banks, J., Carson J. and B. Nelson, 1996. Discrete-Event
System Simulation. Prentice-Hall, Upper Saddle River, NJ,
USA.

Desel, J. 2000. “Teaching System Modelling, Simulation and
Validation”, in Proceedings of the 2000 Winter Simulation
Conference, pp. 1669-1675.

Ferris, C.L., Grubbs, F. E. and C. L. Weaver. 1946.
“Operating Characteristics for the Common Statistical
Tests of Significance,” Annals of Mathematical Statistics,
June 1946. The Institute of Mathematicals Statistics

Guru, A., P. Savory and R. Williams. 2000. “A web-based

interface for storing and Executing Simulation Models”, in
Proceedings of the 2000 Winter Simulation Conference,
pp. 1810-1814.

Murata, T. 1989. "Petri Nets: Properties, Analysis and

Applications," Proc. IEEE, vol. 77, No. 4 (Apr.), pages.
541-580.

Pedgen, C. D. 1986. “Introduction to SIMAN”, in
Proceedings of the 1986 Winter Simulation Conference,
pp. 95-103.

ACKNOWLEDGEMENTS

This work was partially supported by the Comisíon
Interministerial de Ciencia y Tecnología (CICYT)
projects DPI2004-03104 and DPI2005-00112.

ALBERT PEÑARROYA was born in
Barcelona, Spain and went to the
Technical University of Catalonia,
where he studied at the Industrial
Engineering School of Barcelona and
obtained his degree in 2006.

FRANCESC CASADO was born in
Barcelona, Spain and went to the
Technical University of Catalonia,
where he studied at the Industrial
Engineering School of Barcelona and
obtained his degree in 2006.

JAN ROSELL received his B.S. in
telecomunication engineering and
Ph.D. in advanced automation and
robotics from the Technical University
of Catalonia, Barcelona, Spain, in 1989
and 1998, respectively. In 1992 he
joined the Institute of Industrial and

Control Engineering, where he has developed research
activities in robotics. He has been involved in teaching
activities in automatic control and modelling and
simulation as an assistant professor since 1996 and as
an associate professor since 2001. His current technical
areas include automatic programming, robotic
assembly, and modelling and simulation of
manufacturing systems.

