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Abstract: The success of sampling-based methods to solve path-planning problems strongly
relies in the sampling process, i.e. the performance in terms of number of samples needed
and computational time spent strongly depends on the configurations sampled. This paper
proposes an importance sampling method based on geometric constraints that only samples
certain submanifolds of the configuration space where a mobile object is allowed to move,
thus reducing the size of the search space and increasing the density of samples in the regions
of interest. The proposed sampling method is used in a probabilistic roadmap planer, giving
promising results.

1. INTRODUCTION

Tasks where an object has to be positioned with respect to
its surroundings are ubiquitous in robotics, and therefore
one of the main challenges in this field is the planning
of collision-free paths for an object from a start to a
goal configuration in a workspace containing obstacles.
Path planning is usually performed in the robot’s Con-
figuration Space (C-space), where the robot is mapped
to a point and the obstacles in the workspace are en-
larged accordingly (C-obstacles). The characterization of
C-obstacles is a difficult issue, that can be avoided by
using sampling-based approaches. These methods consist
in the generation of collision-free samples of C-space and
in their interconnection with free paths, forming either
roadmaps (PRM, Kavraki and Latombe [1994]) or trees
(RRT, Kuffner and LaValle [2000]). PRM planners are
conceived as multi-query planners, while RRT planners are
developed to rapidly solve a single-query problem.

Sampling-based methods that use probabilistic sampling
have been demonstrated to be probabilistic complete,
e.g. for the basic PRM method the number of samples
necessary to achieve a probability of failure below a
given threshold has been determined by Kavraki et al.
[1998]. Nevertheless, for performance purposes, this num-
ber should be reasonably low, and therefore care must be
taken in the generation of samples and their interconnec-
tion.

In this line, importance sampling strategies are proposed
to increase the density of samples in critical areas of the
C-space. These strategies have been classified by Hsu et al.
[2006] into: a) those that bias samples using workspace
information (e.g. van der Berg and Overmars [2005],
Kurniawati and Hsu [2006]); b) those that over-sample the
C-space but quickly filter any not-promising configuration
(e.g. Boor et al. [1999], Hsu et al. [2003]); c) those that
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Colombiana de Ingeniera “Julio Garavito” placed in Bogotá D.C.,
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bias the sampling using the information gathered during
the construction of the roadmap or tree (e.g. Kavraki
et al. [1996], Hsu et al. [2005]); and d) those that deform
(dilate) the free C-space to make it more expansive to
easily capture its connectivity (e.g. Saha et al. [2005],
Cheng et al. [2006]).

In this paper we propose a novel importance sampling
method for a PRM planer based on geometric constraints.
Oftentimes, the positioning of an object with respect to
its surroundings can be decomposed into a series of con-
strained movements which do not require using the six de-
grees of freedom (DOF) a rigid body has in free space. Ge-
ometric constraints provide a straightforward way of spec-
ifying these movements, by explicitly stating the relations
(distances, angles, tangencies, and the like) that must hold
between two or more geometric entities. If the constrained
entities are rigid bodies, then the simultaneous satisfaction
of a set of geometric constraints yields a submanifold of
SE(3) 1 of allowed movements, commonly referred to as
a configuration submanifold. Provided the availability of
sets of user-defined constraints associated to a given task,
a geometric constraint solver can be used to find the map
between them and the configuration manifolds [Hoffmann
and Joan-Arinyo, 2005]. Then, configurations belonging to
these submanifolds can be sampled and used in a PRM,
giving a better performance in terms of number of required
samples and computation time.

The paper is structured as follows. Section 2 first de-
scribes the geometric constraint solver used. Then, sec-
tion 3 presents the proposed approach, which is illustrated
and evaluated in Section 4. Finally, section 5 gives the
conclusions of the work.

2. PMF GEOMETRIC CONSTRAINT SOLVER

Positioning Mobile with respect to Fixed (PMF), is a
geometric constraint solver that takes on the problem of
finding the configurations of a mobile rigid body that
1 SE(3) stands for the group of rigid motions of R

3, and SO(3) for
the group of positive rotations of R

3.
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Fig. 1. The mobile object a is constrained with respect
to the fixed object b according to the plane-plane
coincidence constraint Πa = Πb. The available DOF of
a (one rotation, two translations )are shown as dashed
lines.

satisfy a set of geometric constraints defined between
elements of the body and elements of its environment,
which are considered fixed [Rodŕıguez et al., 2008]. PMF
accepts as input constraints distance (d) and angle (∠)
relations between points, lines, and planes.

The solution methodology exploits the fact that in a set
of geometric constraints, the rotational component can
often be separated from the translational one and solved
independently. This yields a solver that is computationally
very efficient, with solution times within the millisecond
order of magnitude 2 .

By means of logic reasoning and constraint rewriting, the
solver is able to map a broad family of input problems to
a few rotational and translational scenarios with known
closed-form solution. The solver can handle under-, well-,
and overconstrained (redundant or incompatible) prob-
lems with multiple solutions. Table 2 lists the different
configuration submanifolds to which a mobile object can
be restricted with PMF. All combinations between trans-
lational and rotational submanifolds are possible. Each
configuration submanifold has a known parametric repre-
sentation, so particular solutions can be represented in the
form of a parameterized rigid transformation H(z) that
depends on as many parameters as available DOF, where
z is the parametric coordinates vector. Consequently, a
sweep across the parameter space will span the entire
solution submanifold.

As a simple example, consider the objects a and b of
Fig. 1. Constraining the mobile object a with respect
to the fixed object b according to the plane-plane coin-
cidence constraint Πa = Πb restricts three of a’s DOF.
The remaining DOF (two translational, one rotational),
are shown in Fig. 1 with dashed lines. The constraint
Πa = Πb can be decomposed into the pure rotational paral-
lelism constraint n̂Πa

‖ n̂Πb
and the point-plane contained

constraint Pa ⊂ Πb, where n̂ represents a plane normal
and Pa is a point contained in Πa. The transformation
H(z), when applied to the initial (and in general, non
constraint-satisfying) configuration of a, takes it to any of
the infinitely possible constraint-satisfying configurations.
The particular solution is determined by the values of the
parameter vector z. The form of H(z), as computed by the

2 Computation times were measured on a Pentium 4 processor with
a 3.4GHz CPU clock.

Table 1. Translational and rotational configu-
ration submanifolds to which a mobile object

can be restricted.

Translational submanifold DOF

R
3 3

Plane 2
Sphere 2
Cylinder 2
Line 1
Ellipse 1
Point 0

Rotational submanifold DOF

SO(3) 3
Vectors at an angle 2
Parallel vectors 1
Fixed rotation 0

solver, and expressed as a homogeneous transformation,
has the form:

H(z) =
[

R(z1) T(z1, z2, z3)
0 1

]
(1)

The rotational component is computed as
R(z1) = R(n̂Πb

, z1) R(û, σ) (2)

where R(n̂Πb
, z1) represents the free rotation by an angle of

z1 about vector n̂Πb
, and R(û, σ) is a fixed rotation that

enforces the rotational constraint, where û = n̂Πa
× n̂Πb

and σ is the angle between n̂Πa
and n̂Πb

.

The translational component is given by
T(z1, z2, z3) = Qb(z2, z3) − R(Pa) (3)

where Qb(z2, z3) = Pb + z2d̂2 + z3d̂3 represents any point
contained in Πb, and R(Pa) is the current rotational
component solution, as computed in (2), applied to the
mobile point. Vectors n̂Πb

, d̂2, and d̂3 are orthogonal.
Notice that the translational component is function of the
rotational component.

3. THE PROPOSED APPROACH

3.1 Sampling the configuration submanifold

When constructing the C-space representation of the
workspace, samples are taken only from the configuration
submanifolds of the associated constraint sets. The pro-
posed constraint-based PRM does not need to know the
explicit parametric representation of a submanifold, but
rather its number of DOF, and the range of values each
DOF parameter can take (e.g., rotations about an axis are
parameterized with a single variable with values in [0, 2π)).

To obtain a sample in the configuration submanifold,
the PRM constructs the parametric coordinates vector z
by generating for each zi ∈ z a random value within its
valid parameter range, and provides it to the geometric
constraint solver that maps it to workspace coordinates
via H(z).

The total number of samples N generated by the PRM
is set from the value c of the average sample density per
DOF. For the unconstrained scenario, that is, the sampling
of six-dimensional SE(3), N = c6. Assuming that a path
from the initial to the final configuration of the mobile



Fig. 2. Screenshot of the PMF geometric constraint solver
user interface.

object exists for a single configuration submanifold with
dimension m < 6, the number of samples needed to
connect them is cm, that is, c(6−m) times lower than the
unconstrained scenario. For instance, setting c = 10 and
m = 2 yields c(6−m) = 104, a difference of four orders of
magnitude for the same sample density.

For problems where the movements of the mobile object
are represented as a sequence of constrained movements,
each taking place in a different configuration submanifold,
there exist as many constraint sets as configuration sub-
manifolds. In these cases, the total number of samples N
is given by

∑
cmi , where mi represents the dimension of

the ith configuration submanifold.

Constraint scenarios can be intuitively created by means
of the constraint solver user interface, depicted in Fig. 2.
Once created, they can be encoded into XML format for
persistent storage purposes, and retrieved at any later time
by a decoder implemented in the path planning program.
The following example represents an XML description of a
constraint set, containing a single point-plane coincidence
constraint:
<PMF>

<ConstraintSet>

<Constraint>

<MobileElement type="point" X="2.0" Y="2.0" Z="2.0">

Point coordinates

</MobileElement>

<FixedElement type="plane" DX="0.0" DY="0.0" DZ="1.0"

X ="0.0" Y ="0.0" Z ="0.0">

Plane coordinates (normal vector + point)

</FixedElement>

<ConstraintType type="coincidence">

Constraint type

</ConstraintType>

</Constraint>

</ConstraintSet>

</PMF>

3.2 Connecting the samples

To test if a rectilinear path in C-space that connects
two configurations q1 and q2 is free or not, the local
planner uses an iterative bisection method to collision-
check the intermediate configurations up to a certain
spatial resolution.

When these configurations are free, the path is labeled
with a cost computed as follows:

Cost = distance(q1, q2) ∗ weight(q1, q2) (4)

where distance(q1, q2) is a length measure between q1 and
q2, and weight(q1, q2) evaluates to 1 when q1 and q2 belong
to the same configuration submanifold and evaluates to
a big penalizing value otherwise. In this way, transitions
between submanifolds occur in the neighboorhood of their
intersections, and are only pursued when they are neces-
sary to reach the goal configuration.

The distance(q1, q2) function in (4) measures distances
between configurations in SE(3). There does not exist
a bi-invariant (intrinsic) metric in SE(3), however, both
left- and right-invariant metrics can be defined [Belta
and Kumar, 2002, Park, 1995, Zefran and Kumar, 1996,
Kuffner, 2004]. Any metric in SE(3) ultimately depends on
a choice of length scale. The left-invariant metric proposed
in Park [1995] has been chosen, since its computation is
fast and does not require an iterative procedure. According
to it, the distance between two configurations q1 and q2

that share a common reference frame can be computed as

distance(q1, q2) =

√
φ2 +

(
Δ
L

)2

. (5)

where φ and Δ are respectively the rotational and transla-
tional distances between q1 and q2, and L scales the con-
tribution of the translational and rotational components.
Let R and T represent the rotational and translational
components of a sample configuration q, then

Δ = |Tb − Ta| (6)

φ = cos−1

(
tr(R−1

a Rb) − 1
2

)
. (7)

where tr(·) represents the matrix trace, i.e., the sum of its
diagonal terms.

3.3 The planning algorithm

A basic probabilistic roadmap planner is a multiquery
planner that, in a preprocessing stage, attempts to map
the connectivity of the free C-space (Cfree) onto a roadmap
represented as a graph in which the vertices are configu-
rations sampled from Cfree and the edges are collision-
free paths that connect these configurations. Then, in the
query phase, the initial and the goal configurations are
connected to the roadmap and a path is found using graph
search algorithms.

Algorithm 1 details the preprocessing stage of a basic
PRM, where a graph G representing the roadmap is
constructed. The input is the number N of configurations
to sample. The finding of collision-free paths that connect
two edges (represented by the function CONNECT in the
algorithm) is usually done by a simple and quick local
planner.

The proposed constraint-based PRM uses the basic PRM
modified as follows:

• Function GET-RANDOM-SAMPLE() now iteratively gets
a sample from each of the configuration submanifolds



Algorithm 1 Basic algorithm for the preprocessing phase
of a basic PRM.
BASIC PRM(N)

G.vertexSet← ∅, G.edgeSet← ∅, i← 0

For i = 1 to N do:

s = GET-RANDOM-SAMPLE()

If s ∈ Cfree then

INSERT(s, G.vertexSet)

ForAll q ∈ G.vertexSet | s �= q and q ∈ NEIGBORHOOD(s) do

If CONNECT(s, q) then

INSERT((s, q), G.edgeSet)

End If

End For

End If

End For

RETURN G

as explained in Section 3.1. This function maintains
the sample density c value constant and equal in all
the sampled submanifolds.

• Function CONNECT labels free edges as detailed in
Section 3.2.

The implementation of the basic PRM and its extension
proposed in the present paper has been done using the
following tools: The PQP library for the collision detection
process, the Boost Graph Library to manage the graphs
(including the query phase using the A* algorithm), and
Coin3D and Qt for the graphic rendering and Graphical
User Interface (GUI), respectively. An overview about the
way to interact with these tools can be found in [Pérez
and Rosell, 2008]. Objects are geometrically described by
VRML models and the configuration of each object in the
scene is handled by a custom XML file. An additional
custom XML file contains the information regarding the
sets of geometric constraints (Section 3.1).

4. EXAMPLES AND EVALUATION

The proposed approach will be exemplified with the prob-
lem depicted in Fig. 3(a), where an “S” shaped mobile
object has to move from a start to a goal configuration
by traversing a square hole in a wall and by avoiding a
spherical obstacle.

Inspection of the problem reveals that traversing the
square hole in the wall is a typical narrow-passage problem
that can be formulated and solved in a 3-DOF planar
domain. Three constraint sets are used to characterize the
allowed movements of the mobile object and reduce the
size of the search space: one set for the narrow passage,
and the remaining two for connecting the planar problem
to the initial and final configurations:

• Fix the orientation of the mobile object to that of
its initial configuration and constrain its centerpoint
to a line that is parallel to the z axis (i.e. a 1-DOF
submanifold).

• Constrain the horizontal plane of the mobile object
to coincide with a plane parallel to the z axis passing
through the hole centerpoint (i.e. a 3 DOF submani-
fold).

c N for the constraint-based PRM N for the basic PRM
N = c + 2c3 N = c6

6 438 46656
7 693 117649
8 1032 262144
9 1467 531441
10 2010 1000000
11 2673 1771561
12 3468 2985984
13 4407 4826809

Table 2. Comparison between the number
of samples N that must be taken by the
constraint-based PRM and the basic PRM for

the example depicted in Fig.3.

• Maintain the z axis of the mobile object parallel to
the workspace z axis, and constrain its centerpoint to
a plane that is parallel to the wall and contains the
goal configuration (i.e. a 3 DOF submanifold).

Figs.3(b) and 3(c) depict different instants of a particular
solution sequence from a perspective and top view, respec-
tively.

The number of samples that must be obtained for this
problem evaluates to N =

∑
cmi = c + 2c3. Table 2 lists

the number of samples N that must be taken for different
sample density values c for the constraint-based PRM
subject to the abovementioned constraint sets, and com-
pares them to the basic (unconstrained) PRM. It can be
seen that the constraint-based PRM requires a number of
samples that is two orders of magnitude smaller compared
to the basic PRM. This is very meaningful considering
that the average success rate of a PRM without any kind
of sampling bias strongly depends on the value of c. Fig. 4
shows the average success rate of the constraint-based
PRM for different values of c, as well as a normalized
measure of the average solution time. The convex shape
of the solution time curve is due to the fact that the
total number of samples N is a polynomial function of
c. Also, for higher values of N , the connectivity of the
graph representing the roadmap increases, as does the
graph analysis phase needed to construct it. To contrast
these results, the average success rate of an unconstrained
PRM with N = 4407 was lower than 2.5%. This number
of samples yields a sample density c = 4.05, whereas in
the constrained scenario the density value rises to c = 13
and the success rate to over 98%, for equal N .

The time required by the geometric constraint solver to
compute the map from constraint sets to configuration
submanifolds was many orders of magnitude smaller than
the time required by the PRM to find a collision-free
path, and thus can be considered to add a negligible
computational overhead.

5. CONCLUSION

Sampling-based methods based on probabilistic sampling
have the interesting property of being probabilistic com-
plete. Nevertheless, importance sampling methods are re-
quired in order to solve a problem with as few samples
as possible. In this line, this paper has proposed (for the
path planning of an object) a simple, efficient, and intuitive
method to bias the sampling using geometric constraints.
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Fig. 3. (a) The “S” shaped object has to move from a
start to a goal configuration by traversing a square
hole in a wall and by avoiding a spherical obstacle.
(b) and (c) show different instants of a particular
solution sequence from a perspective and top view,
respectively. The line and planes to which the mobile
object centerpoint is being constrained are explicitly
shown.
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Fig. 4. Performance metrics for the solution of the example
of Fig.3 using the constraint-based PRM. Parameter
c stands for the average number of samples per DOF,
and the average solution time has been normalized to
the [0, 100] interval.

These constraints are defined between the mobile object
and the obstacles in its environment, and reduce the sam-
pling space to the submanifolds of the configuration space
that satisfy the constraints. This results in a considerable
reduction of the computational effort required to build
the roadmap. The method has been tested on simulated
examples yielding promising results.

Future work goes towards the obtaining of a solution path
that guarantees the satisfaction of the constraints all along
it. This requires: a) the interpolation of samples to be
done in the parameter space; b) the distance be measured
over the submanifolds; and c) the transition between
submanifolds be done through configurations sampled over
their intersection. Also the use of a deterministic sampling
source is under consideration.
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