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Abstract Previous works have already demonstrated that determinis-
tic sampling can be competitive with respect to probabilistic sampling in
sampling-based path planners. Nevertheless, the definition of a general sam-
pling sequence for any d-dimensional Configuration Space satisfying the
requirements needed for path planning is not a trivial issue. This paper
makes a proposal of a simple and yet efficient deterministic sampling se-
quence based on the recursive use, over a multi-grid cell decomposition, of
the ordering of the 2d descendant cells of any parent cell. This ordering is
generated by the digital construction method using a d × d matrix Td. A
general expression of this matrix (i.e. for any d) is introduced and its per-
formance analyzed in terms of the mutual distance. The paper ends with a
performance evaluation of the use of the proposed deterministic sampling
sequence in different well known path planners.

1 Introduction

Configuration Space has been the planning paradigm that has nurtured the
field of robotic path planning since its beginnings. The explicit character-
ization of the obstacles of the C-space is not possible when the number
of degrees of freedom of the robot is high and, therefore, sampling-based
methods are usually proposed. These methods only require the collision
evaluation of a discrete set of sample configurations and the interconnec-
tion of the free ones in either roadmaps or trees. Therefore, the generation
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of samples is one of the crucial factors in the performance of sampling-based
planners.

Random sampling using a uniform distribution is usually considered,
like in the basic Probabilistic Roadmap Method (PRM [3]) or the basic
Rapidly-exploring Random Trees approach (RRT [5]); although determinis-
tic sampling sequences have also been proposed [1]. Deterministic sampling
sequences have the advantages of classical grid search approaches, i.e. a lat-
tice structure (that allows to easily determine the neighborhood relations)
and a good uniform coverage of the C-space. Deterministic sampling se-
quences applied to PRM-like planners have given good results compared to
the basic PRM planner [6].

For difficult path-planning problems, importance sampling methods are
required to bias the sampling towards some given areas of the C-space, and
reduce the amount of samples needed to find a solution (e.g. [7,2]). These
strategies usually rely on a uniform generation of samples that are then
filtered by different criteria to select samples in critical regions; therefore,
deterministic sampling can also be used for that purpose.

This paper has as objective the proposal of a general deterministic sam-
pling sequence and its performance evaluation. Section 2 and 3 introduce the
deterministic sampling sequence. Section 4 makes a performance analysis
and Section 5 presents its use on different path planners. Finally, Section 6
concludes the work.

2 Deterministic sampling sequence

The deterministic sampling sequence used is based on a multi-grid cell de-
composition, introduced in Section 2.1, and on the low-dispersion ordering
of the descendant cells of any given parent cell, introduced in Section 2.2.
The expression of the sequence is given in Section 2.3 and Section 2.4 dis-
cusses the mapping of samples to configurations of C-space.

2.1 Multi-grid cell decomposition

A multi-grid decomposition of a d-dimensional space of parameters is con-
sidered. An initial cell with sides of unitary size covering the entire space
composes the first grid. The levels in the multi-grid are called partition lev-
els and are enumerated such that the first one is level 0 and the maximum
resolution1 corresponds to partition level M (partition levels are denoted
by super-indices). A cell of a given partition level M is called a sample or
an M -cell; and is coded as follows. Let:

1 The maximum resolution needed is a fixed value determined by the clearance
of the path planning problem to be solved.
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– The index matrix V M be the binary d × M matrix whose rows are the
binary representation of the indices vM

j ∀j ∈ 1 . . . d of an M -cell on the
regular grid of partition level M :
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(1)

being aMj and a1j the most and the least significant bit, respectively, of
the binary representation of vM

j .

– WM be a d × M matrix of weights:

WM =

















w11 . . . w1j . . . w1M

...
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...
wi1 . . . wij . . . wiM

...
...

...
wd1 . . . wdj . . . wdM

















(2)

with:

wij = 2(M−j)d+i−1 for i ∈ 1 . . . d, j ∈ 1 . . . M (3)

Then, the sample code CM and its index matrix V M are related as follows:

CM = V M · WM (4)

V M = CM&WM (5)

where the operation A · B represents the scalar product of matrices A and
B, and the operation a&B between a scalar a and a matrix B computes
the bit-AND operation between a and all the components bij of B. As an
example the conversion operations of cell code 22 with indices (6,1) on the
grid of partition level M = 3 (Fig. 1a) are:

C
3 = V

3
· W

3 =

(

1 1 0
0 0 1

)

·

(

16 4 1
32 8 2

)

= 22 (6)

V
3 = C

3&W
3 = 22&

(

16 4 1
32 8 2

)

=

= 010110&

(

010000 000100 000001
100000 001000 000010

)

=

(

1 1 0
0 0 1

)

(7)

For any m-cell, with m < M , the cell code coincides with that of the
first M -cell it contains (i.e. the descendant M -cell with lower cell code), as
illustrated in Fig. 1b.
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Fig. 1 Coding for M = 3 of: a) M -cells b) 1-cells.

2.2 Ordering of descendant cells

The position of a cell with respect to its parent cell can be defined by a
binary word, i, with d bits, each one determining the index (0 or 1) over

the corresponding axis, i.e. i =
∑d

j=1 nj2
j−1 (Fig. 2).

Finding a low-dispersion ordering of the 2d descendant cells of a parent
cell is then equivalent to find a sequence, Ld, of 2d binary words such that
each element of the sequence maximizes the mutual distance, i.e. the min-
imum distance to the previous elements of the sequence. This criterion is
further discussed in Section 4.1.

Ld can be obtained using a digital construction method [8] that finds the
sequence multiplying a d×d binary matrix, Td, by the binary representation
of the indices of the sequence:

Ld(i) = Td i = Td







n1

...
nd






(8)

An example of Td for d = 2 and d = 3 is:

T2 =

(

1 0
1 1

)

T3 =





1 1 0
0 1 0
1 0 1



 (9)

and the corresponding orderings obtained are shown in Table 1. A proposal
for Td is introduced in Section 3.
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Table 1 Ordering Ld for d = 2 and d = 3.
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Fig. 2 Position i of a cell with respect to its parent cell for two and three dimen-
sional spaces.

2.3 The sampling sequence

The sampling sequence, sd(k), is a sequence of sample codes that speci-
fies the ordering in which the d-dimensional space is to be explored. The
sequence sd(k) is based on the recursive use of Ld.

Let k ≥ 0 be the index of the sequence and Td be the matrix that
determines the cell ordering of the descendant cells as introduced in the
previous section. Then:

sd(k) = (TdV
M
k ) · W ′M (10)

where V M
k is the index matrix corresponding to k, the product TdV

M
k is the

standard binary matrix multiplication between matrices Td and V M
k , and

W ′M is a d × M matrix of weights, with:

w′

ij = 2(j−1)d+i−1 for i ∈ 1 . . . d j ∈ 1 . . . M (11)

(Note that matrix W ′M coincides with WM if the order of its columns
is exchanged).
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Table 2 First 20 samples of sequence s2.

k 0 1 2 3 4 5 6 7 8 9

s2[k] 0 48 32 16 12 60 44 28 8 56

k 10 11 12 13 14 15 16 17 18 19

s2[k] 40 24 4 52 36 20 3 51 35 19

Table 3 First 10 samples of r48

2 .

k 0 1 2 3 4 5 6 7 8 9

r48

2 [k] 48 60 56 52 51 63 59 55 50 62

As an example, considering M = 3 and the expression of T2 proposed
in (9), the sample for k = 6 is:

s2(6) =

[(

1 0
1 1

)(

0 1 0
0 0 1

)]

·

(

1 4 16
2 8 32

)

=

(

0 1 0
0 1 1

)

·

(

1 4 16
2 8 32

)

= 44 (12)

The first 20 samples generated by s2(k) are shown in Table 2. Following
the sequence over Fig. 1a gives a good understanding of how it incrementally
and uniformly covers the space.

If only the samples of a given cell are necessary, they can be obtained
with the following (re)sampling sequence. Let mK be the partition level of
that cell and K be its code. Then:

rK
d (j) = K + (TdV

(M−mK)
j ) · W ′(M−mK) with j ≥ 0 (13)

As an example, the sixth sample generated by r2(k) over the 1-cell 48
(Fig. 1b) is:

r48
2 (6) = 48 +

[(

1 0
1 1

) (

1 0
0 1

)]

·

(

1 4
2 8

)

= 48 +

(

1 0
1 1

)

·

(

1 4
2 8

)

= 48 + 11 = 59 (14)

The first 10 samples generated by r48
2 (k) are shown in Table 3. Following

the sequence over Fig. 1a shows the same incremental and uniform coverage
feature.

2.4 Mapping to C-space

The deterministic sampling sequence proposed obtains samples of a d-dimensional
unit cube of parameters, that must be appropriately mapped to configura-
tions of a particular C-space.
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For the path planning of robot manipulators of d d.o.f., the C-space
is ℜd. Taking into account the maximum displacement of each joint, the
configuration coordinates can be scaled to the unit cube [0, 1]d ⊂ ℜd. Then,
the indices (vM

1 , . . . , vM
d ) on the grid of partition level M of the samples

obtained by sd(k) are mapped to coordinates of the C-space as follows:

xj = vM
j sM +

sM

2
∀j ∈ 1 . . . d (15)

being sM = 1
2M the size of the sides of the M -cells.

For the path planning of 3D rigid-bodies that can both translate and
rotate the mapping must be carefully handled, due to the difficulty to uni-
formly distribute samples over the rotation group, as discussed in [4].

3 Proposal for Td

In the digital construction method introduced in [8] the matrix Td is pro-
posed to be built by columns in an incremental way, but no general expres-
sion or procedure is given except for the first column that must be composed
of ones in order to place the second sample as far as possible from the first
one.

A first attempt to obtain a general expression was done in [9], where the
proposed Td (called TA

d ) gives an ever non-increasing mutual distance for
the elements of Ld, although the maximization of the mutual distance is not
guaranteed. In this paper a new proposal for Td (called TC

d ) is introduced
and its performance is evaluated and compared to that of [9].

3.1 Matrix TA
d

This matrix is proposed in [9] and is constructed as follows. Each column
j ∈ 1 . . . d is composed of (j − 1) zeros followed by a 1 (that corresponds to
the diagonal). The rest of the column is filled by alternating (j − 1) zeros
with (j − 1) ones until the column is completed. The resulting Td is a lower
diagonal matrix with non-zero diagonal elements, and therefore is full rank.
As a consequence, Td is able to generate all the 2d elements of the sequence.

As an example, for d = 9 the matrix is:

TA
9 =





























1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
1 1 1 0 0 1 0 0 0
1 0 1 0 0 0 1 0 0
1 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 1





























(16)
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3.2 Matrix TC
d

This matrix is based on a prime decomposition. For each prime dimension,
i.e. d = 2, 3, 5, 7, . . ., Td is first defined:

TC
2 =

(

1 0
1 1

)

(17)

TC
3 =





1 1 0
0 1 0
1 0 1



 (18)

TC
d = Truncd(T

C
(d+1)) ∀d prime s.t. d ≥ 5 (19)

where the function Truncd(M) returns the submatrix of M composed of the
first d columns and the first d rows.

Then, for any d, a recursive construction is done based on the prime
decomposition of d, e.g.:

TC
6 =

(

TC
3 0

TC
3 TC

3

)

=

















1 1 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0
1 1 0 1 1 0
0 1 0 0 1 0
1 0 1 1 0 1

















(20)
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TC
9 =





TC
3 TC

3 0
0 TC

3 0
TC

3 0 TC
3



 (21)

It can be seen that this approach results with a first column not com-
posed exclusively of ones. This makes that the second sample is not as far
as possible from the first one, i.e. the second sample does not maximize the
mutual distance. Nevertheless, as shown in the next section, in the long run
it results in a better performance, i.e. in a slower decreasing of the mutual
distance.

4 Comparative study

4.1 Performance index

Different uniformity measures have been proposed in the literature [6]. Per-
haps the most useful in path planning is dispersion, a metrics-based crite-
rion. Let X = [0, 1]

d
⊂ ℜd be the space where to generate samples. Let P

be the set of samples taken from X. Then, dispersion for P is defined as:

δ(P, ρ) = sup
q∈X

min
p∈P

ρ(q, p) (22)

being ρ any metrics on X. Intuitively, it corresponds to the largest empty
ball inscribed in X and with the center in X. A criterion that emphasizes
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dispersion requires that points be as far away from each other as possible,
e.g. the mutual distance of the samples must be maximized [8]. Mutual
distance on P is defined as:

ρm(P ) = min
x,y∈P

ρ(x, y) (23)

The mutual distance can be considered with different metrics:

– Manhattan distance between the cells codes in the parameters space.
– Euclidean metrics between the samples in the C-space, in the case of ℜd.

In this paper the cumulative area of the mutual distance is used as
the basic performance index, since it shows how far the samples are being
placed from each other as a progression in the sample number. This allows
the visualization of the gain obtained by one method compared to another.

4.2 Sampling in ℜ3

The first experiment is the comparison between the use of TC
d and TA

d in the
sampling of ℜ3. Using M = 3, Fig. 3 (top) shows the Manhattan mutual
distance (left) and the mutual distance measured with Euclidean metrics
(right) computed for all the 512 samples of the sequence. The continuous
blue line corresponds to TC

3 and the red point line to TA
3 . It can be seen

in both figures that the continuous line decreases more slowly showing that
the approach that uses TC

3 gets a better uniform coverage of the space
as samples are placed. This is better shown in Fig. 3 (bottom) where the
cumulative area of the mutual distance is represented.

4.3 Sampling in ℜ6 and ℜ9

The last experiments are the comparisons between the use of TC
d and TA

d in
the sampling of ℜ6 and ℜ9. Using M = 1, Fig. 4 (top) shows the Euclidean
mutual distances for all the 64 and 512 samples of the corresponding se-
quences. Fig. 4 (bottom) shows the cumulative areas. It can be seen that
in both cases, like in ℜ3, TC

d also provides the best uniform coverage of
C-space.

5 Examples

In this Section the proposed deterministic sequence is applied to different
path planners. Although an exhaustive study has not been done, the results
show a better performance when the proposed deterministic sequence is
used.



A General Deterministic Sequence for Sampling d-dimensional C-spaces 11

Table 4 Comparison using the PRM of the Motion Strategy Library.

Halton Hammersley Random s6(k)

PRM Vertices 141 144 139 ± 10 126

PRM Edges 278 284 270 ± 23 250

Num components 2 2 2.4 ± 1.4 1

Col. Detection 13,637 14,027 12, 864 ± 1, 577 6,314

Construct Time 1.41s 1.65s 1.52 ± 0.35s 0.64s

Table 5 Comparison using the SBL planner.

Random s9(k)

Num. Vertices 219.63 ± 70.70 118.71 ± 28.24

Construct Time 0.38 ± 0.10s 0.25 ± 0.04s

5.1 Comparison with other deterministic sequences

The Motion Strategy Library is an Open Source code for the testing of mo-
tion planning algorithms, available at http://msl.cs.uiuc.edu/msl/. The library
includes planners based on Rapidly-exploring Random Trees (RRTs) and
on Probabilistic Roadmaps (PRMs). It has the utility of selecting random
sampling or deterministic sampling based on the Halton or Hammersley se-
quences. It has already been used in [6] to evaluate deterministic sampling
vs. random sampling using the basic PRM.

The library has been extended to include the deterministic sampling
proposed in the present paper. The results using 300 samples of a basic
PRM to solve a simple path planning problem for a 6 d.o.f. manipulator are
shown in Table 4 and Fig. 5. It can be seen that using the same number
of samples, the proposed sequence outperforms other sampling methods,
allowing the PRM to be constructed more quickly using less edges and
vertices, and being all of them connected on a single component.

5.2 Use in local sampling

The Motion Planning Kit (MPK) is a C++ library and toolkit for develop-
ing single and multi-robot motion planners, available at http://ai.stanford.edu

/∼mitul/mpk/home.html. It includes a Single-Query Bi-Directional Proba-
bilistic Roadmap Planner (SBL [10]). This planner expands two trees rooted
at the queried configurations, using for the node expansion a local sampling
procedure over a hypercube centered at the node to be expanded and cov-
ering the 30% of the total C-space.

The SBL planner has been extended to incorporate (in the local sampling
expansion procedure) the deterministic sampling sequence proposed, instead
of using pure random sampling. Table 5 compares the results obtained for
the motion planning of a 6 d.o.f. Puma robot mounted over a 3 d.o.f. mobile
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a) b)

c) d)

e) f)

Fig. 5 a) Initial configuration; b) final configuration; c) path using the Halton se-
quence; d) path using the Hammersley sequence; e) path using a random sequence;
f) path using the proposed sequence s6(k) with T C

6 .

platform in a particular environment2. Fig. 6a shows a typical path obtained

2 Since the SBL planner randomly selects some directions to project the sampled
configurations, the results using deterministic sampling also vary between execu-
tions. The results shown in Table 5 are the 95% confidence intervals obtained from
50 executions.
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Fig. 6 Sample solution paths of a 9 d.o.f. path planning problem found using
random sampling (left) and deterministic sampling (right).

with the original random SBL and Fig. 6b shows a path followed when
using the deterministic sequence s9(k) with TC

9 . The deterministic sequence
enhances the planner’s performance, building the path with less milestones
and in a shorter time than with the original expansion procedure using
random sampling.

5.3 Use in C-space modeling

The Kautham planner is a path planner, being developed by the authors,
that uses deterministic sampling to generate a hierarchical cell decomposi-
tion model of C-space where harmonic functions are computed and used to
find a solution. Fig. 7a shows a 2D-example that illustrates the quadtree
generated from the sampling and classification of configurations using the
proposed deterministic sequence. Fig. 7b shows the same number of samples
obtained by random sampling. It is obvious that this latter set could not
generate a proper quadtree of the C-space.

6 Conclusions

The performance of sampling-based path planners relies on the set of sam-
ples used. For uniform sampling, deterministic sampling sequences are a
good alternative since they outperform probabilistic methods in terms of
the dispersion obtained.

This paper proposes a simple and yet efficient deterministic sampling
sequence computed on a multi-grid decomposition of a parameter space and
the corresponding mapping to the C-space. The expression given is general
for any d-dimensional Configuration Space.

The deterministic sampling sequence introduced has been validated by
the good results obtained when applied to different path planners.
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a) b)

Fig. 7 a) Quadtree obtained from 250 samples of the proposed deterministic sam-
pling sequence; b) Distribution of the same number of samples obtained randomly
that shows that the quadtree could not have been properly build using this set of
samples.
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