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Abstract

This paper presents a deterministic sequence that has

the following good and useful features for sampling-based

motion planners. It generates samples over a hierarchical

grid structure in an incremental low-dispersion manner,

allowing a uniform coverage of the Configuration Space.

Due to its grid structure, neighborhood relationship be-

tween samples is easily computed, thus allowing roadmap-

based planners to faster construct the roadmap. The se-

quence is computationally efficient and permits to locally

control the degree of resolution required at each region

of the Configuration Space by allowing the generation of

more samples where they are most needed. The proposed

sequence has been incorporated to a PRM-like planner

and tested on a bend-corridor problem for different degrees

of freedom.

1 Introduction

Sampling-based motion planners, like Probabilistic

Roadmap Methods (PRMs) [6], or those based on the

Rapidly-exploring Random Trees (RRT) [7], are giving

very good results in robot motion planning problems with

many degrees of freedom.

Following these random sampling methods, several ap-

proaches have been proposed that bias the sampling to-

wards the most promising regions, thus improving the ef-

ficiency and allowing to cope with difficult path planning

problems (including narrow passages). These approaches

consider, for instance, a sample distribution that increases

the number of samples on the border of the obstacles [3],

around the medial axis of the free space [14], or around the

initial and goal configurations [13]. Others propose the use

of an artificial potential field to bias the sampling towards

narrow passages [1], or the use of a lazy-evaluation ap-

proach that delays collision checking until it is absolutely
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needed [2]. Random sampling techniques have the advan-

tage that task-specific knowledge can be incorporated to

heuristically tailor the sample distribution in order to con-

centrate samples in critical regions.

In comparison to those approaches, deterministic sam-

pling sequences have been proposed [4]. These determin-

istic sampling sequences have the advantages of classical

grid search approaches, i.e. a lattice structure (that allows

to easily determine the neighborhood relations) and a good

uniform coverage of the Configuration Space (C-space).

For path planning purposes the uniform coverage is usu-

ally evaluated with the metric-based measure of dispersion,

like the radius of the largest ball that does not contain any

sample. Moreover, deterministic sampling sequences can

provide an incrementally improved quality (in terms of dis-

persion) as the number of samples increases [10]. Deter-

ministic sampling sequences applied to PRM-like planners

are demonstrated in [8] to achieve the best asymptotic con-

vergence rate and experimental results showed that they

outperformed random sampling in nearly all motion plan-

ning problems.

As thoroughly argued in [9], the achievements of

sampling-based motion planners are mainly due to their

sampling-based nature, not due to the randomization (usu-

ally) used to generate the samples. Therefore, efforts

should better be directed towards the study of determin-

istic and controllable ways of generating samples, rather

than towards the proposal of heuristically guided random-

ization variants. In this line, this paper proposes a deter-

ministic sampling sequence that, besides the general ad-

vantages of deterministic sequences, it is computationally

very efficient and also allows to locally control the degree

of resolution required at each region of the C-space by gen-

erating more samples where they are most needed. The

sequence is used in a PRM-like planner and tested on a

bend-corridor problem for different degrees of freedom.

The paper is structured as follows. Section 2 presents

the 2d-tree decomposition and the code convention used to

label and locate the cells. Section 3 introduces the gener-

ation of the deterministic sampling sequence that is tested
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Figure 1: Cell codes for different levels in the hierarchy in 2D and 3D C-spaces.

in Section 4 using a bend-corridor problem with 2, 3 and 6

d.o.f. Finally, Section 5 concludes the work.

2 C-space decomposition

This section presents the C-space decomposition used.

Although this is not the main contribution of the paper

(anyone dealing with multi-grids has coped with similar

problems), it is described here since the formulation pro-

posed allows an efficient implementation of the planner.

An initial cell, b0, covering the entire C-space is the tree

root (b0 is considered to have sides with unitary size). The

levels in the tree are called partition levels and are enu-

merated such that the tree root is the partition level 0 and

the maximum resolution corresponds to partition level M .

Partition levels will be denoted by super-indices: a cell of

a given partition level m will be called an m-cell, and de-

noted as bm. The m-cells have sides of size sm = 1/2m

and form a regular grid called Gm.

A code convention that univocally labels and locates

each cell of the 2d-tree decomposition of C-space is intro-

duced. Using this code convention, any subset of cells, e.g.

those belonging to the subset Cfree of collision-free con-

figurations, can be managed as a list of codes, in a similar

way as the linear quadtrees proposed in [5] for d = 2.

The cell codes are non-negative integers that univocally

locate the cells in C-space. The codes for a given partition

level m range from Cm
ini to Cm

end, with:

Cm
ini =

2dm − 1

2d − 1
(1)

Cm
end = 2dCini (2)

Since Cm
ini = C

(m−1)
end + 1, the proposed code convention

uses all non-negative integers. Figure 1 shows the codes

used for the cells of different partition levels for 2D and

3D C-spaces.

2.1 Cell Codes

The obtention of the code of a cell from its location in

C-space and vice-versa is done as follows. Let:

• The index matrix V m
bk

be the binary d × m matrix

whose rows are the binary representation of the in-

dices vm
j ∀j ∈ 1 . . . d of an m-cell, bm

k , on the regu-

lar grid Gm:

V m
bk

=

















vm
1
...

vm
j

...

vm
d

















=

















am1 . . . ai1 . . . a11

...
...

...

amj . . . aij . . . a1j

...
...

...

amd . . . aid . . . a1d

















(3)

being amj and a1j the MSB and the LSB, respec-

tively, of the binary representation of vm
j .



• Wm and W ′m be d × m matrices of weights, with:

wij= 2(m−j)d+i−1 for i ∈ 1 . . . d j ∈ 1 . . . m(4)

w′

ij= 2(j−1)d+i−1 for i ∈ 1 . . . d j ∈ 1 . . . m (5)

Note that matrix W ′m coincides with Wm if the order

of its columns is exchanged.

Then, given the indices V m
bk

of an m-cell bm
k , the cor-

responding code Cm
bk

is computed using the following ex-

pression:

Cm
bk

= Cm
ini + V m

bk
· Wm (6)

where Cm
ini is the code of the initial cell expressed in equa-

tion (1), and the operation A ·B represents the scalar prod-

uct of matrices A and B. As an example the code of the

2-cell with indices v2
1 = 2 and v2

2 = 1 in the 2D C-space

of Figure 1 is obtained as:

V 2
bk

= C2
ini +

(

1 0
0 1

)

·

(

4 1
8 2

)

= 5 + 6 = 11 (7)

On the other way round, given a code Cm
bk

, the indices

V m
bk

are obtained as:

V m
bk

= (Cm
bk

− Cm
ini)&Wm (8)

where the operation a&B between a scalar a and a ma-

trix B computes the bit-AND operation between a and all

the components bij of B. The components of the resulting

matrix are 1 if the bit-AND operation gives a non-zero re-

sult, or 0 otherwise. As an example the indices of the 2-cell

with code 11 are:

V 2
bk

= (11 − 5)&

(

4 1
8 2

)

= 0110&

(

0100 0001
1000 0010

)

=

(

1 0
0 1

)

(9)

Finally, the level m of a given cell with code k (needed

to determine Cm
ini) is found as:

m = (int)

{

1

d
log2[(2

d − 1)k + 1]

}

(10)

2.2 Neighbor relationship

Different levels of neighborhood can be obtained by

combining the following functions:

• Manhattan distance function: Determines the codes

of the cells that are at a distance ∆ in a given direc-

tion vj . It uses equation (6) with the index matrix

modified adequately:

manhattan(Cm
bk

, vj) = Cm
ini +

















vm
1
...

vm
j ± ∆

...

vm
d

















· Wm

(11)

• Parent function: Determines the code of the parent

cell by using equation (6) modified as follows:

parent(Cm
bk

) = Cm−1
ini + trunc(V m

bk
) · Wm−1 (12)

where the operation trunc(A) eliminates the last col-

umn of matrix A.

• Descendant function: Determines the code of the first

descendant cell by using equation (6) modified as fol-

lows:

descendant(Cm
bk

) = Cm+1
ini + expand(V m

bk
) · Wm+1

(13)

where the operation expand(A) adds a column of ze-

ros to matrix A. The codes of the other 2d−1 descen-

dants are correlatives to this one.

3 Deterministic Sequence Generation

This section introduces the generation of the determinis-

tic sampling sequence. The sequence relies on a predefined

ordering of the 2d descendant cells of any given parent cell.

3.1 Low-dispersion ordering of descendant cells

The position of a cell with respect to its parent cell

can be defined by a binary word, i, with d bits, one for

each axis. If nj is the bit corresponding to the coordi-

nate xj 1 ≤ j ≤ d, then:

i =

d
∑

j=1

nj2
j−1 (14)

Finding a low-dispersion ordering of the 2d descendant

cells of a parent cell is then equivalent to the finding of the

sequence, Ld, of 2d binary words such that each element

of the sequence maximizes the minimum distance1 to the

previous elements of the sequence. This criterium is called

1The distance between two binary numbers is measured as the number

of bits that differ, and is equivalent to the Manhattan distance between the

cells they represent.



i L2(i)

00 = 0 00 = 0
01 = 1 11 = 3
10 = 2 10 = 2
11 = 3 01 = 1

i L3(i)

000 = 0 000 = 0
001 = 1 111 = 7
010 = 2 010 = 2
011 = 3 101 = 5
100 = 4 100 = 4
101 = 5 011 = 3
110 = 6 110 = 6
111 = 7 001 = 1

Table 1: Ordering Ld for d = 2 and d = 3. Descendant

cells are labeled from 0 to 2d − 1

Sequence L6 Distance to Previous Mutual distance

000000

S1 111111 6 6

S2 101010 3 3

010101 6 3

S3 100100 3 2

011011 6 2

001110 3 2

110001 6 2

S4 001000 4 1

110111 6 1

...
...

...

Table 2: Distances computed for the first elements of the

ordering L6.

in [10] the maximization of the mutual distance, and is ob-

tained using a digital construction method. This method

uses a d × d binary matrix, Td, that codifies the ordering

and finds the sequence multiplying Td by the binary repre-

sentation of the indices of the sequence:

Ld(i) = Td i = Td







n1

...

nd






(15)

As an example Table 1 shows the ordering Ld obtained for

d = 2 and d = 3 using the following matrices:

T2 =

(

1 0
1 1

)

T3 =





1 0 0
1 1 0
1 0 1



 (16)

Using the digital construction method it is demonstrated

in [10] that:

a) The ordering obtained maximizes the mutual distance

if each column of the matrix is chosen such that it

is maximally distant to all the vectors spanned by the

previous columns of the matrix (being the first column

composed of ones).

b) Each column j (in combination with the previous

columns) is used to generate a set Sj of 2(j−1) new

elements of the sequence, having all of them the same

mutual distance.

In this paper we propose a matrix Td constructed as fol-

lows. Each column j ∈ 1 . . . d is composed of (j − 1)
zeros followed by a 1 (that corresponds to the diagonal).

The rest of the column is filled by alternating (j − 1) ze-

ros with (j − 1) ones until the column is completed. The

resulting Td is a lower diagonal matrix with non-zero diag-

onal elements and therefore is full rank. As a consequence,

Td is able to generate all the 2d elements of the sequence.

As an example, for d = 12 the matrix is:

T12 =









































1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0 0
1 1 1 1 1 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0 0 1 0
1 1 0 0 1 1 0 0 0 0 0 1









































(17)

Using the proposed Td, the first elements of the order-

ing obtained for d = 6 are shown in Table 2, together with

the corresponding distances. Table 3 shows the mutual dis-

tances of the elements of Ld for d = 2 to d = 12. Each

column of the table corresponds to the set Sj of the 2(j−1)

elements obtained by combining column j of matrix Td

with the previous ones.

The proposed convention to construct matrix Td is gen-

eral for any value of d and the sequence Ld obtained is

near-optimum in terms of mutual distance. It can be appre-

ciated in table 3 that, for any d, the mutual distances are

always non-increasing and that, when there is a decrease,

it is as minimum as possible. For lower values of d, al-

ternative expressions of Td can be found able to generate

a better sequence Ld (i.e. with a slower decrease of the

mutual distance), although a generalization to any d is not

clear.

3.2 The sampling sequence

The sampling sequence, sd(k), is a sequence of

cell codes that specifies the ordering in which the

d-dimensional C-space is to be explored. The sequence

sd(k) is based on the recursive use of Ld.

Let k ≥ 0 be the index of the sequence, m be the hierar-

chical level associated to k as expressed in equation (10),



d S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

2 2 1

3 3 1 1

4 4 2 1 1

5 5 2 1 1 1

6 6 3 2 1 1 1

7 7 3 3 1 1 1 1

8 8 4 3 2 1 1 1 1

9 9 4 3 3 1 1 1 1 1

10 10 5 4 3 2 1 1 1 1 1

11 11 5 5 3 3 1 1 1 1 1 1

12 12 6 5 4 3 2 1 1 1 1 1 1

Table 3: Mutual distances of the elements of Ld for d=2 to

d=12, grouped in sets Sj (since all of the 2(j−1) elements

of a set have the same mutual distance).

i 0 1 2 3 4 5 6 7 8 9

s2[i] 0 1 4 3 2 5 17 13 9 8

i 10 11 12 13 14 15 16 17 18 19

s2[i] 20 16 12 7 19 15 11 6 18 14

Table 4: First 20 samples of sequence s2.

and Td be the matrix that determines the cell ordering of

the descendant cells as introduced in the previous section.

Then:

sd(k) = Cm
ini + (TdV

m
bk

) · W ′m (18)

where TdV
m
bk

is the standard binary matrix multiplication

between matrices Td and V m
bk

and W ′m the weight matrix

introduced in (5).

As an example, for d = 2 and k = 6 (with indices

v2
1 = 1 and v2

2 = 0 on G2) the obtained sample is:

s2(6) = C2
ini +

[(

1 0
1 1

)(

0 1
0 0

)]

·

(

1 4
2 8

)

= 5 +

(

0 1
0 1

)

·

(

1 4
2 8

)

= 17 (19)

The first samples generated are shown in Table 4 and illus-

trated in Figure 2.

3.3 Adaptive behavior

When a given sampled configuration c (corresponding

to the center of a cell with code K) is evaluated as a free

configuration, and during the construction of a roadmap

few or no free paths are found to connect c to its neighbor

free samples, further sampling is required in its environ-

ment. This can be done using the following (re)sampling

sequence:

rd(j)=K2dm + Cm
ini + (TdV

m
bk

) ·W ′m with j ≥ 1 (20)

where m is the hierarchical level associated to j. As an

example Table 5 shows the first cell codes obtained by re-

sampling cell 4 in a 2D C-space.

i 1 2 3 4 5 6 7 8 9 10

r2[i] 17 20 19 18 69 81 77 73 72 84

i 11 12 13 14 15 16 17 18 19 · · ·

r2[i] 80 76 71 83 79 75 70 82 78 · · ·

Table 5: First samples obtained by resampling cell 4 (see

Figure 1 for their location in C-space).
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Figure 2: Sampled configurations of a 2D C-space located

at the center of the sampled cells. The configuration labels

indicate the index in the generation sequence.

4 Evaluation

The evaluation of the proposed deterministic sequence

has been carried out by implementing a PRM-like plan-

ner that uses the samples generated by the deterministic se-

quence. A basic PRM planner has also been implemented

to compare the results. A bend-corridor problem in two,

three and six dimensions has been selected as a test-bed.

Figure 3 shows the bend-corridor problem for d = 2 and

the solution path found using deterministic sampling.

First results show a good performance of the determin-

istic sequence in comparison to the probabilistic one. An

exhaustive experimentation is currently being carried out

by considering different sizes of the width corridor and dif-

ferent neighborhood distances and policies in the definition

of neighbors.

5 Conclusions

Sampling-based path planners have proven to be the

best current alternative to solve difficult path planning

problems with many degrees of freedom. A crucial fac-



Figure 3: The bend-corridor problem for d = 2.

tor in the performance of those planners is how samples

are generated. Sampling sequences should satisfy the fol-

lowing requirements. An uniform coverage that can be in-

crementally improved as the number of samples increases,

a lattice structure that reduces the cost of computing neigh-

borhood relationships, and a locally controllable degree

of resolution that allows to generate more samples at the

critical regions. Moreover, computationally efficient algo-

rithms are highly desirable.

The proposed deterministic sampling sequence satisfies

all these requirements and is, therefore, a good tool to be

incorporated to any sampling-based motion planner. Its use

in a PRM-like planner has been implemented for a bend-

corridor problem with 2, 3 and 6 degrees of freedom, giv-

ing promising results. The sequence is also currently being

applied for the sampling and classification of cells of a mo-

tion planner based on a combination of harmonic functions

and a sampling-based scheme [12], and as the basis for the

sampling in SE(3) for rigid-body motion planning [11].
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