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Abstract—Deterministic sampling has been demonstrated
to be competitive with respect to probabilistic sampling in
sampling-based path planners. This paper proposes a simple
and yet efficient deterministic sampling sequence for the
sampling of ad-dimensionalC-space. The sequence is based
on the recursive use, over a multi-grid cell decomposition,
of the ordering of the 2d descendant cells of any parent
cell. This ordering is generated by the digital construction
method using a d × d matrix Td. The paper proposes
different general expressions of this matrix and contributes
with a comparative study of the different resulting sequences
over severalC-spaces:ℜ3, SO(3) and ℜ

6. The performance
index used for the comparison is the mutual distance, i.e.
the minimum distance (measured with the corresponding
metrics) of each new generated sample to all the previous
samples of the sequence. The best of the alternatives found
can provide good performance results when applied to
sampling-based path planners.

Index Terms— Deterministic sampling, sampling-based
methods, path planning.

I. I NTRODUCTION

The sampling-based path planners are giving very good
results in problems with many degrees of freedom. Their
success is mainly due to its sampling-based nature, since
the planning paradigm used does not require the difficult
explicit characterization of the obstacles of theC-space,
but only the interconnection and collision evaluation of
a discrete set of sample configurations. Therefore, the
generation of samples is one of the crucial factors in the
performance of sampling-based planers.

Random sampling is usually used by sampling-based
path planners, like the Probabilistic Roadmap Methods
(PRMs) [1], or those based on the Rapidly-exploring
Random Trees (RRT) [2]. For difficult path-planning
problems, like those involving narrow passages, the num-
ber of samples required by a uniform sampling might be
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quite large. This is the reason why several importance
sampling methods have been introduced (e.g. [3], [4]).
Those strategies increase the density of sampling in some
given areas of theC-space, thus making easier to find a
solution using a reasonable amount of samples.

In comparison to those approaches, deterministic sam-
pling sequences have been proposed [5]. These determin-
istic sampling sequences have the advantages of classical
grid search approaches, i.e. a lattice structure (that allows
to easily determine the neighborhood relations) and a
good uniform coverage of theC-space. Deterministic
sampling sequences applied to PRM-like planners are
demonstrated to achieve good results compared to the
basic PRM planner [6]. Moreover, they can be used
in importance sampling strategies since these strategies
usually rely on a uniform generation of samples that
are then filtered by different criteria to select samples in
critical regions.

This paper has as objective the proposal of a general
deterministic sampling sequence and the execution of a
comparative study over severalC-spaces between different
variants. The paper is structured as follows. Section II
introduces the deterministic sampling sequence that is
computed on a multi-grid cell decomposition of a para-
meter space, and based on the recursive application of an
orderingLd of the2d descendant cells of any parent cell.
Section III discusses the mapping of the parameter space
to theC-space and Section IV proposes different ways to
generateLd. Then, a comparative study of the different
proposed variants of the sequence over severalC-spaces
(ℜ3, SO(3) andℜ6) is performed in Section V. Finally,
Section VI concludes the work.

II. D ETERMINISTIC SAMPLING SEQUENCE

The deterministic sampling sequence used is based
on a multi-grid cell decomposition, introduced in
Section II-A, and on the low-dispersion ordering of the
descendant cells of any given parent cell, introduced in
Section II-B. The expression of the sequence is given in
Section II-C.



A. Multi-grid cell decomposition of C-space

A multi-grid decomposition of a d-dimensional
C-space is considered. An initial cell with sides of unitary
size covering the entireC-space composes the first grid.
The levels in the multi-grid are called partition levels and
are enumerated such that the first one is level 0 and the
maximum resolution corresponds to partition levelM

(partition levels are denoted by super-indices). A cell of a
given partition levelM is called a sample or anM -cell;
and is coded as follows. Let:

• The index matrixV M be the binaryd × M matrix
whose rows are the binary representation of the
indicesvM

j ∀j ∈ 1 . . . d of anM -cell on the regular
grid of partition levelM :
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


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(1)
beingaMj anda1j the most and least significant bit,
respectively, of the binary representation ofvM

j .
• WM be ad × M matrix of weights, with:

wij = 2(M−j)d+i−1 for i ∈ 1 . . . d , j ∈ 1 . . . M

(2)
Then, the sample codeCM and its index matrixV M

are related as follows:

CM = V M · WM (3)

V M = CM&WM (4)

where the operationA · B represents the scalar product
of matricesA andB, and the operationa&B between a
scalara and a matrixB computes the bit-AND operation
betweena and all the componentsbij of B. As an example
the conversion operations of cell code 22 with indices
(6,1) on the grid of partition levelM = 3 (Figure 1a)
are:

C
3=

�
1 1 0
0 0 1

�
·

�
16 4 1
32 8 2

�
= 22 (5)

V
3=22&

�
16 4 1
32 8 2

�
=

=010110&

�
010000 000100 000001
100000 001000 000010

�
=

�
1 1 0
0 0 1

�
(6)

The cell code of anym-cell, with m < M , is made
coincident with the code of the firstM -cell it contains (i.e.
the descendantM -cell with lower cell code), as illustrated
in Figure 1b.

2     3

0     1

6      7

4     5

0   1    2    3    4    5    6    7    

0

2

4

6

1

3

5

7

48

28

20

40

32

 8

0             4

10  11

8     9

14   15

12    13

18   19    22   23    

16    17   20   21

26   27    30   31    

24   25    28   29

34   35    38   39    

32   33   36    37

42   43    46   47    

40  41    44    45

50   51    54   55    

48  49    52    53

58   59    62   63    

56   57    60    61

36

12 24

16

52

44 56 60

a) b)

xx

yy M=3 m=2

Fig. 1. Coding ofM -cells (a) and of2-cells (b) whenM = 3.

B. Ordering of descendant cells

The position of a cell with respect to its parent cell can
be defined by a binary word,i, with d bits, one for each
axis, i.e.i =

∑d

j=1 nj2
j−1.

Finding a low-dispersion ordering of the2d descendant
cells of a parent cell is then equivalent to the finding
of the sequence,Ld, of 2d binary words such that each
element of the sequence maximizes the mutual distance,
i.e. the minimum distance to the previous elements
of the sequence. This criterion is further discussed in
Section V-A.

Ld can be obtained using a digital construction
method [7] that finds the sequence multiplying ad × d

binary matrix, Td, by the binary representation of the
indices of the sequence:

Ld(i) = Td i = Td







n1

...
nd






(7)

Different proposals forTd are introduced in Section IV
and the comparative study of their effects on the sequence
is detailed in Section V. An example ofTd for d = 2 and
d = 3 is:

T2 =

(

1 0

1 1

)

T3 =





1 1 0

0 1 0

1 0 1



 (8)

C. The sampling sequence

The sampling sequence,sd(k), is a sequence of
sample codes that specifies the ordering in which the
d-dimensionalC-space is to be explored. The sequence
sd(k) is based on the recursive use ofLd.

Let k ≥ 0 be the index of the sequence andTd be the
matrix that determines the cell ordering of the descendant
cells as introduced in the previous section. Then:

sd(k) = (TdV
M
k ) · W ′M (9)



TABLE I

FIRST 20 SAMPLES OF SEQUENCEs2 AND FIRST 10

SAMPLES OFr
48

2 .

k 0 1 2 3 4 5 6 7 8 9
s2[k] 0 48 32 16 12 60 44 28 8 56

k 10 11 12 13 14 15 16 17 18 19
s2[k] 40 24 4 52 36 20 3 51 35 19

k 0 1 2 3 4 5 6 7 8 9
r
48

2 [k] 48 60 56 52 51 63 59 55 50 62

whereV M
k is the index matrix corresponding tok, the

productTdV
M
k is the standard binary matrix multiplica-

tion between matricesTd andV M
k , andW ′M is ad × M

matrix of weights, with:

w′

ij = 2(j−1)d+i−1 for i ∈ 1 . . . d j ∈ 1 . . . M (10)

(Note that matrixW ′M coincides withWM if the order
of its columns is exchanged).

If only the samples of a given cell ofC-space are neces-
sary, they can be obtained with the following (re)sampling
sequence. LetmK be the partition level of that cell andK
be its code. Then:

rK
d (j)=K + (TdV

(M−mK)
j ) · W ′(M−mK) with j ≥ 1

(11)
As an example, consideringM = 3 and the expression

of T2 proposed in (8), the sample corresponding tok = 6

is:

s2(6) =

[(

1 0

1 1

)(

0 1 0

0 0 1

)]

·

(

1 4 16

2 8 32

)

=

(

0 1 0

0 1 1

)

·

(

1 4 16

2 8 32

)

= 44 (12)

and the sample generated byr2(k) over the1-cell 48 (i.e.
the top right corner of theC-space) fork = 6 is:

r48
2 (6) = 48 +

[(

1 0

1 1

)(

1 0

0 1

)]

·

(

1 4

2 8

)

= 48 +

(

1 0

1 1

)

·

(

1 4

2 8

)

=48 + 11=59(13)

Finally, the first 20 samples generated bys2(k) and
the first 10 generated byr48

2 (k) are shown in Table I.
Following these sequences over Figure 1a gives a good
understanding of how they incrementally and uniformly
cover the space.

III. M APPING C-SPACES

The deterministic sampling sequence proposed in
the previous section is used to obtain samples of a

d-dimensional unit cube of parameters, that must be
appropriately mapped to configurations of a particular
C-space.

A. Manipulators

For the path planning of robot manipulators ofd d.o.f.,
the C-space isℜd. Taking into account the maximum
displacement of each joint, the configuration coordinates
can be scaled to the unit cube[0, 1]d ⊂ ℜd. Then, the
indices (vM

1 , . . . , vM
d ) on the grid of partition levelM

of the samples obtained by the deterministic sampling
sequence are mapped to coordinates of theC-space as
follows:

xj = vM
j sM +

sM

2
∀j ∈ 1 . . . d (14)

beingsM the size of the sides of theM -cells.

B. Rigid body motions

For the path planning of a 3D rigid-body that can both
translate and rotate theC-space isSE(3), the Special
Euclidean Group in three dimensions. This group is the
cartesian product of the Euclidean spaceℜ3 with the
Special Orthogonal GroupSO(3) of 3 × 3 orthonormal
matrices that represent, respectively, arbitrary translations
and rotations in 3 dimensions [8].

Following the main ideas given in [9], the mapping
of the indices(vM

1 , . . . , vM
6 ) of the samples obtained by

the deterministic sampling sequences6(d) are mapped to
configurations ofSE(3) as follows.

1) Translations: The position of a 3D rigid body is
defined by the coordinates of the origin of its reference
frame with respect to a reference frame fixed at the
workspace. Taking into account the maximum displace-
ment in each direction, the coordinates can be scaled to
the unit cube[0, 1]3 ⊂ ℜ3, and the mapping of the indices
(vM

1 , vM
2 , vM

3 ) to the coordinates(x1, x2, x3) is done as
in (14).

2) Rotations: The orientation of a 3D rigid body can be
defined by a rotation direction and a rotation vector. For
the rotation direction, the indicesvM

4 andvM
5 are used to

parameterize the hierarchical triangular decomposition of
the surface of a tetrahedron inscribed in the unit sphere.
For the rotation angle, the indexvM

6 is used as:

θ = 2arccos(vM
6 sM +

sM

2
) (15)

This is a nonlinear expression that differs from the
linear one proposed in [9] (i.e.θ = vM

6 π) and pro-
vides a more uniform mapping, because of the space
topology, as measured by a standard bi-invariant metrics
(Section V-A).



IV. O RDERING ALTERNATIVES

In the digital construction method introduced in [7]
the matrixTd is proposed to be built by columns in an
incremental way, but no general expression or procedure
is given except for the first column that must be composed
of ones in order to place the second sample as far as
possible of the first one. The only general expression
proposed until now is that of [10], that generates an
ever non-increasing mutual distance for the elements of
Ld although the maximization of the mutual distance
(Section V-A) is not guaranteed.

This section discusses three proposals ofTd in order
to compare its performance in the generation of the
deterministic sampling sequence. All three proposals
satisfy the main constraint of having a general expression
for any dimensiond of theC-space.

A. Proposal TA
d

This matrix is the one proposed in [10] and it will
be used as a base of comparison for the other proposals,
since it is the only general expression proposed forTd

until now. It is constructed as follows. Each column
j ∈ 1 . . . d is composed of(j − 1) zeros followed by
a 1 (that corresponds to the diagonal). The rest of the
column is filled by alternating(j − 1) zeros with(j − 1)

ones until the column is completed. The resultingTd is
a lower diagonal matrix with non-zero diagonal elements,
and therefore is full rank. As a consequence,Td is able to
generate all the2d elements of the sequence.

As an example, ford = 10 the matrix is:

TA
10 =



































1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0

1 0 1 0 0 0 1 0 0 0

1 1 0 1 0 0 0 1 0 0

1 0 0 1 0 0 0 0 1 0

1 1 1 1 1 0 0 0 0 1



































(16)

B. Proposal TB
d

This matrix satisfiesTd = T−1
d , i.e. the index in the

sequence of a given sample can be obtained by using the
same expressionsd. This feature can provide a more
efficient coding of the algorithms used in sampling-based
planners. Its construction is based on a recursive use
of TB

2 for anyd that is a power of 2:

TB
2 =

(

1 0

1 1

)

(17)

TB
4 =

(

TB
2 0

TB
2 TB

2

)

=









1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1









(18)

TB
8 =

(

TB
4 0

TB
4 TB

4

)

=









TB
2 0 0 0

TB
2 TB

2 0 0

TB
2 0 TB

2 0

TB
2 TB

2 TB
2 TB

2









(19)

Whend is not a power of 2 then:

TB
d = Truncd(T

B
D ) (20)

with D being the smallest power of 2 satisfyingD > d

and Truncd(TD) being the square matrix composed of the
first d rows and columns ofTD.

As an example,TB
3 andTB

6 are:

TB
3 = Trunc3(T

B
4 ) =





1 0 0

1 1 0

1 0 1



 (21)

TB
6 = Trunc6(T

B
8 ) =

















1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 1 1 1 0 0

1 0 0 0 1 0

1 1 0 0 1 1

















(22)

C. Proposal TC
d

This matrix is based on a prime decomposition. For
each prime dimension, i.e.d = 2, 3, 5, 7, . . . , Td is first
defined:

TC
2 =

(

1 0

1 1

)

(23)

TC
3 =





1 1 0

0 1 0

1 0 1



 (24)

TC
d = Truncd(T

C
(d+1)) ∀d prime s.t.d ≥ 5 (25)

Then, for anyd, a recursive construction is done based
on the prime decomposition ofd, e.g.:
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Fig. 2. Top: Mutual distances (Manhattan (left) and Euclidean (right)) in the sampling ofℜ3 with M = 3; Bottom: Cumulative area
in the sampling ofℜ3 (Manhattan (left) and Euclidean (right)).

TC
6 =

(

TC
3 0

TC
3 TC

3

)

=

















1 1 0 0 0 0

0 1 0 0 0 0

1 0 1 0 0 0

1 1 0 1 1 0

0 1 0 0 1 0

1 0 1 1 0 1

















(26)

TC
9 =





TC
3 TC

3 0

0 T3 0

TC
3 0 TC

3



 (27)

It can be seen that this approach results with a first
column not composed exclusively of ones. This makes
that the second sample is not as far as possible from
the first one, i.e. the second sample does not maximize
the mutual distance. Nevertheless, as shown in the next
section, in the long run it results in a better performance,
i.e. in a slower decreasing of the mutual distance.

V. COMPARATIVE STUDY

A. Performance index

Different uniformity measures have been proposed
in the literature [6]. Perhaps the most useful in path
planning is dispersion, a metrics-based criterion. Let
X = [0, 1]

d
⊂ ℜd be the space where to generate samples.

Let P be the set of samples taken fromX. Then,
dispersion forP is defined as:

δ(P, ρ) = sup
q∈X

min
p∈P

ρ(q, p) (28)

beingρ any metrics onX. Intuitively, it corresponds to
the largest empty ball inscribed inX and with the center
in X. A criterion that emphasizes dispersion requires that
points be as far away from each other as possible, e.g. the
mutual distance of the samples must be maximized [7].
Mutual distance onP is defined as:

ρm(P ) = min
x,y∈P

ρ(x, y) (29)

In this paper the mutual distance will be used as the
basic performance index, using the following metrics:

• Manhattan distance between the cells codes in the
parameters space.

• Euclidean metrics between the samples in the
C-space, in the case ofℜd.

• Standard bi-invariant metrics between the samples in
theC-space, in the case ofSO(3). BeingR1 andR2

two elements inSO(3), this metrics is [11]:



d(R1, R2) =
∥

∥log
(

R−1
1 R2

)∥

∥

= arccos

(

Trace
(

R−1
1 R2

)

− 1

2

)

(30)

However, a more useful way to compare the perfor-
mance of the ordering alternatives is the comparison of
the cumulative area (i.e. the integral) of the mutual
distance. This shows how far the samples are being placed
from each other as a progression in the sample number,
visualizing the gain of one method compared to another.

B. Sampling in ℜ3

The first experiment is the comparison of the use of
TC

3 with TA
3 = TB

3 in the sampling ofℜ3. UsingM =

3, Figure 2 (top) shows the Manhattan mutual distance
(left) and the mutual distance measured with Euclidean
metrics (right) computed for all the 512 samples of the
sequence. The continuous blue line corresponds toTC

3

and the red point line toTA
3 . It can be seen in both figures

that continuous line decreases more slowly showing that
this approach gets a better uniform covering of the space
as samples are placed. The cumulative area of the
mutual distance is shown in Figure 2 (bottom); as stated
previously,TC

3 provides a better performance.

C. Sampling in SO(3)

The second experiment is the comparison of the use
of TC

3 with TA
3 = TB

3 in the sampling ofSO(3).
UsingM = 3, Figure 3 (top) shows the mutual distance
measured with the standard bi-invariant metrics for this
space, while Figure 3 (bottom) shows the cumulative
area of the previous one. Manhattan mutual distance
results are the same that those obtained forℜ3, as both
spaces useT3 for sampling. Differences between the
two building methods are not obvious using bi-invariant
metrics mutual distance, i.e. in the sampling ofSO(3)

the performance obtained using alternative matricesTd is
roughly the same.

D. Sampling in ℜ6

The last experiment is the comparison of the use of
TC

6 with TA
6 and TB

6 in the sampling ofℜ6. Using
M = 1, Figure 4 (top) shows the Manhattan and the
Euclidean mutual distances for all the 64 samples of the
sequence. Figure 4 (bottom) shows the cumulative area
for both measures of mutual distance. Continuous blue
line corresponds toTC

6 , dashed green line corresponds to
TB

6 and dotted red line corresponds toTA
6 . It can be seen

that in this case, like inℜ3, TC
d also provides the best

uniform coverage ofC-space.
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Fig. 3. Top: Bi-invariant metrics mutual distance in the
sampling ofSO(3), with M = 3; Bottom: Bi-invariant
metrics cumulative area in the sampling ofSO(3).

VI. C ONCLUSIONS

The performance of sampling-based path planners re-
lies on the set of samples used. For uniform sampling,
deterministic sampling sequences are a good alternative
since they outperform probabilistic methods in terms of
the dispersion obtained.

This paper proposes a simple and yet efficient deter-
ministic sampling sequence computed on a multi-grid de-
composition of a parameter space and the corresponding
mapping to theC-space. The paper contributes with a
comparative study of the performance of different variants
of the sampling sequence over theC-spacesℜ3, SO(3)

andℜ6.
Each variant depends on the choice ofTd, the d × d

matrix used to generate the orderingLd of the 2d de-
scendant cells of any parent cell. The results of the
comparative study show that:

• The criterium of maximizing the mutual distance at
each new sample ofLd, proposed in [7], does not
guarantee the best performance in terms of uniform
covering; e.g. placing the second sample as far as
possible from the first one greatly constrains where
the next samples should be placed, making them to
have a lower mutual distance than expected.

• An useful way to compare the performance of the
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Fig. 4. Top: Mutual distances (Manhattan (left) and Euclidean (right)) in the sampling ofℜ6 with M = 1; Bottom: Cumulative area
in the sampling ofℜ6 (Manhattan (left) and Euclidean (right)).

ordering alternatives is the comparison of the cumu-
lative area of the mutual distance. This shows how
far the samples are being placed from each other as
a progression in the sample number, visualizing the
gain of one method compared to another. Under this
performance measure, the alternativeTC

d provided
the best sampling sequence and is the one proposed
to be applied to sampling-based path planners.

• The performance of a sequence depends on the
C-space where it is used, since the mutual distance
must be measured in the appropriate metrics. In
the case ofSO(3) differences between the different
variants proposed resulted not significant.

Future work includes the implementation of the pro-
posed deterministic sequenceTC

d in a PRM planner to
prove its performance in a challenging test, e.g. the bend-
corridor problem with different degrees of freedom.
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