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Abstract—Deterministic sampling has been demonstrated
to be competitive with respect to probabilistic sampling in
sampling-based path planners. This paper proposes a simple
and yet efficient deterministic sampling sequence for the
sampling of ad-dimensionalC-space. The sequence is based
on the recursive use, over a multi-grid cell decomposition,
of the ordering of the 2¢ descendant cells of any parent
cell. This ordering is generated by the digital construction
method using ad x d matrix T;. The paper proposes
different general expressions of this matrix and contributes
with a comparative study of the different resulting sequences
over severalC-spaces:®®, SO(3) and R°. The performance
index used for the comparison is the mutual distance, i.e.
the minimum distance (measured with the corresponding
metrics) of each new generated sample to all the previous
samples of the sequence. The best of the alternatives found
can provide good performance results when applied to
sampling-based path planners.

Index Terms— Deterministic sampling, sampling-based
methods, path planning.

I. INTRODUCTION

The sampling-based path planners are giving very good
results in problems with many degrees of freedom. Their

quite large. This is the reason why several importance
sampling methods have been introduced (e.g. [3], [4]).
Those strategies increase the density of sampling in some
given areas of th€-space, thus making easier to find a
solution using a reasonable amount of samples.

In comparison to those approaches, deterministic sam-
pling sequences have been proposed [5]. These determin-
istic sampling sequences have the advantages of classical
grid search approaches, i.e. a lattice structure (thawallo
to easily determine the neighborhood relations) and a
good uniform coverage of thé-space. Deterministic
sampling sequences applied to PRM-like planners are
demonstrated to achieve good results compared to the
basic PRM planner [6]. Moreover, they can be used
in importance sampling strategies since these strategies
usually rely on a uniform generation of samples that
are then filtered by different criteria to select samples in
critical regions.

This paper has as objective the proposal of a general
deterministic sampling sequence and the execution of a
comparative study over sevetakpaces between different
variants. The paper is structured as follows. Section I

the planning paradigm used does not require the difficult
explicit characterization of the obstacles of thespace,
but only the interconnection and collision evaluation of

computed on a multi-grid cell decomposition of a para-
meter space, and based on the recursive application of an
orderingL, of the2¢ descendant cells of any parent cell.

a discrete set of sample configurations. Therefore, theSection Il discusses the mapping of the parameter space

generation of samples is one of the crucial factors in the
performance of sampling-based planers.

Random sampling is usually used by sampling-based
path planners, like the Probabilistic Roadmap Methods
(PRMs) [1], or those based on the Rapidly-exploring
Random Trees (RRT) [2]. For difficult path-planning
problems, like those involving narrow passages, the num-
ber of samples required by a uniform sampling might be
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to theC-space and Section IV proposes different ways to
generatel ;. Then, a comparative study of the different
proposed variants of the sequence over sevgispaces
(R3, SO(3) andR®) is performed in Section V. Finally,
Section VI concludes the work.

Il. D ETERMINISTIC SAMPLING SEQUENCE

The deterministic sampling sequence used is based
on a multi-grid cell decomposition, introduced in
Section lI-A, and on the low-dispersion ordering of the
descendant cells of any given parent cell, introduced in
Section 1I-B. The expression of the sequence is given in
Section II-C.



A. Multi-grid cell decomposition of C-space

A multi-grid decomposition of ad-dimensional
C-space is considered. An initial cell with sides of unitary
size covering the entiré-space composes the first grid.
The levels in the multi-grid are called partition levels and

are enumerated such that the first one is level 0 and the

maximum resolution corresponds to partition levdl
(partition levels are denoted by super-indices). A cell of a
given partition levelM is called a sample or am/-cell;
and is coded as follows. Let:

« The index matrix’™ be the binaryd x M matrix
whose rows are the binary representation of the
indiceSUjW V5 € 1...d of anM-cell on the regular
grid of partition levelM:

M
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beinga,s; anda;; the most and least significant bit,
respectively, of the binary representatiomﬁrf.
o WM pe ad x M matrix of weights, with:

wy; =2M=Ddi"lforic1...d ,jel...M
2)
Then, the sample codeé™ and its index matrix/
are related as follows:
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where the operationl - B represents the scalar product
of matricesA and B, and the operation& B between a
scalara and a matrixB computes the bit-AND operation
betweeru and all the components; of B. As an example
the conversion operations of cell code 22 with indices
(6,1) on the grid of partition leveM = 3 (Figure 1a)
are:

s_ (1 1 0\ (16 4 1) _
C_(o 0 1)'(32 8 2)_22
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The cell code of anyn-cell, with m < M, is made
coincident with the code of the firdt'-cell it contains (i.e.
the descendani/-cell with lower cell code), as illustrated
in Figure 1b.

a) y M=3 b Yy m=2
7 | 42|43 46| 47|58 |59 | 62| 63

40 44 56 | 60
6 |40 |41 |44 | 45|56 |57 | 60| 61
5|34 |35| 38| 39|50 | 51| 54| 55

32 36 48 52
4132|3336 | 37|48 |49 |52 | 53
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Fig. 1. Coding ofM-cells (a) and of-cells (b) whenM = 3.

B. Ordering of descendant cells

The position of a cell with respect to its parent cell can
be defined by a binary word, with d bits, one for each
axis, i.e.i =1 n;2"L.

Finding a low-dispersion ordering of ti2¢ descendant
cells of a parent cell is then equivalent to the finding
of the sequencel.4, of 2¢ binary words such that each
element of the sequence maximizes the mutual distance,
i.e. the minimum distance to the previous elements
of the sequence. This criterion is further discussed in
Section V-A.

L, can be obtained using a digital construction
method [7] that finds the sequence multiplyingl &< d
binary matrix, T;, by the binary representation of the
indices of the sequence:

ni
Ly(i)=Tq i =Ty

nq

@)

Different proposals fof; are introduced in Section IV
and the comparative study of their effects on the sequence
is detailed in Section V. An example &f; for d = 2 and
d=3is:

1 0
ne(Y n

C. The sampling sequence

€

110
010
1 01

The sampling sequencesy(k), is a sequence of
sample codes that specifies the ordering in which the
d-dimensionalC-space is to be explored. The sequence
sq(k) is based on the recursive uselof.

Let k& > 0 be the index of the sequence afigbe the
matrix that determines the cell ordering of the descendant
cells as introduced in the previous section. Then:

sa(k) = (TaVM") - W 9)



TABLE | d-dimensional unit cube of parameters, that must be

FIRST 20 SAMPLES OF SEQUENCE; AND FIRST 10 appropriately mapped to configurations of a particular
SAMPLES OFr3®. C-space.
k 0T 11 21314157161 718109 A. Manipulators

k] | 0 |48]32]16]12]60 44|28 8 | 56 For the path planning of robot manipulatorsdad.o.f.,

k 110111112113 |14 15]16| 17| 18] 19 | the c-space isR?. Taking into account the maximum
kl |40]24] 4 |5236]20] 3 |51[35]19 displacement of each joint, the configuration coordinates
can be scaled to the unit culi@ 1]¢ C R<. Then, the
indices (v, ..., v}) on the grid of partition level\/

of the samples obtained by the deterministic sampling
sequence are mapped to coordinates of Gkhepace as
follows:

r3°[k] | 48|60 | 56 | 52 [ 51| 63| 59| 55| 50| 62

where VM is the index matrix corresponding tq the
productT,V,M is the standard binary matrix multiplica-
tion between matrice®,; andV,», andW’™ is ad x M o Su _
matrix of weights, with: ri=vismt - Viel..d (14)
wj; =20V "lforiel...d jel...M (10) beings), the size of the sides of the/-cells.

(Note that matrixiV’* coincides withW? if the order B. Rigid body motions

of its columns is exchanged). For the path planning of a 3D rigid-body that can both
If only the samples of a given cell GFspace are neces-  translate and rotate thé-space isSE(3), the Special

sary, they can be obtained with the following (re)sampling Euyclidean Group in three dimensions. This group is the

sequence. Letx be the partition level of that cell anfd cartesian product of the Euclidean spageé with the
be its code. Then: Special Orthogonal GrougO(3) of 3 x 3 orthonormal
matrices that represent, respectively, arbitrary trdiosia
K/ _ (M—mg) M—m . X
ra () =K+ (TaVj )W ) with j > 1 and rotations in 3 dimensions [8].
o (11.) Following the main ideas given in [9], the mapping
As an example, consideriny’ = 3 and the expression ¢ e indices(vM, . .., v}M) of the samples obtained by

of Ty proposed in (8), the sample corresponding te 6
is:

the deterministic sampling sequenggd) are mapped to
configurations of5S E(3) as follows.

52(6) Kl 0) (0 1 0)} <1 4 16> 1) Translations: The position of a 3D rigid body is
2 .

1 1/\o o 1 2 8 39 defined by the coordinates of the origin of its reference

) L4 frame with respect to a reference frame fixed at the

= <O 0) . ( 6) =44 (12) workspace. Taking into account the maximum displace-
0 11 2 8 32 ment in each direction, the coordinates can be scaled to

and the sample generated ky(k) over thel-cell 48 (i.e.  the unitcubgo, 1]* C ??, and the mapping of the indices

the top right corner of thé-space) fork = 6 is: (v1!, 3", v3") to the coordinategz, , 22, 23) is done as
in (14).
48y L 0\ /1 0\] (1 4 2) Rotations: The orientation of a 3D rigid body can be
r50(6) = 48 + - ) . . .
L 1)\0 1 2 8 defined by a rotation direction and a rotation vector. For

1 0 1 4 the rotation direction, the indiceg’ andv?! are used to
=48+ : =48 + 11=5413) : : ol i :
1 1 2 8 parameterize the hierarchical triangular decompositfon o

) _ the surface of a tetrahedron inscribed in the unit sphere.
Finally, the first 20 samples generated &y(k) and For the rotation angle, the indeg! is used as:
the first 10 generated by;®(k) are shown in Table I.

Following these sequences over Figure la gives a good 6 = 2 arccos(vM sar + Sﬂ) (15)
understanding of how they incrementally and uniformly 6 2

cover the space. L . . .
This is a nonlinear expression that differs from the

. M APPING C-SPACES linear one proposed in [9] (i.e.d = v}7) and pro-
vides a more uniform mapping, because of the space
The deterministic sampling sequence proposed intopology, as measured by a standard bi-invariant metrics
the previous section is used to obtain samples of a(Section V-A).



IV. ORDERING ALTERNATIVES

In the digital construction method introduced in [7] Ty = G (1)> (17)
the matrixT}, is proposed to be built by columns in an
incremental way, but no general expression or procedure B 1000
is given except for the first column that must be composed Tf = (?23 193> = 1 (1) (1) 8 (18)
of ones in order to place the second sample as far as 2 2
possible of the first one. The only general expression L1
proposed until now is that of [10], that generates an T 0 0 0
ever non-increasing mutual distance for the elements of .5 _ (Tf 0 > |2 TP 0o o (19)
Lg although the maximization of the mutual distance 8\ 1) (¥ o TP o0
(Section V-A) is not guaranteed. TP TP TF TP

This section discusses three proposald pfin order
to compare its performance in the generation of the  Whend is not a power of 2 then:
deterministic sampling sequence. All three proposals
satisfy the main constraint of having a general expression
for any dimension of theC-space. T7 = Truncy(T5) (20)

A. Proposal T3
with D being the smallest power of 2 satisfyidg > d

This matrix is the one proposed in [10] and it will and Trung(7) being the square matrix composed of the
be used as a base of comparison for the other proposalsijrst 4 rows and columns df,.

since it is the only general expression proposedTpr
until now. It is constructed as follows. Each column
j € 1...dis composed ofj — 1) zeros followed by

As an exampleT'¥ andT? are:

a 1 (that corresponds to the diagonal). The rest of the 100
column is filled by alternatingj — 1) zeros with(j — 1) Ty = Tung(T/)=1{1 1 0 (21)
ones until the column is completed. The resultifigis 1 01
a lower diagonal matrix with non-zero diagonal elements, 100 0 0 0
and therefore is full rank. As a consequeritgijs able to 1100 0 0
generate all the? elements of the sequence.
TP = Trung(TP) = Lo 100 0(22)
As an example, fod = 10 the matrix is: 111 1 00
100 010
1000000000 oo 11
1100 00O0O0O0TO
101 00 0O0O0TO0OO o
1101000000 C. Proposal T3
T = 1 (1) (1) 8 (1) (1) 8 8 8 8 (16) This matrix is based on a prime decomposition. For
1 010001000 each prime dimension, i.el = 2,3,5,7,..., Ty is first
defined:
1101 0 0 01 0 O
1001 00O0O0T1TFP0
1111100001 e~ (10 23)
1 1
1 1 0
B
B. Proposal T); T?,C _ 01 0 (24)
1 0 1

This matrix satisfied; = T;l, i.e. the index in the
sequence of a given sample can be obtained by using the ¢ = Truncd(Tngl)) Vd prime s.t.d > 5 (25)
same expression,. This feature can provide a more
efficient coding of the algorithms used in sampling-based
planners. Its construction is based on a recursive use Then, for anyd, a recursive construction is done based
of T.P for anyd that is a power of 2: on the prime decomposition df e.g.:
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Fig. 2. Top: Mutual distances (Manhattan (left) and Euclidean (right))érstimpling ofR® with M = 3; Bottom: Cumulative area
in the sampling oft® (Manhattan (left) and Euclidean (right)).

Let P be the set of samples taken froii. Then,

110000 dispersion forP is defined as:
01 00 00O
TC_(T?? o>_101000(26)
6 = \rg 1¢) 11 1.0 1 1 0 §(P, p) = sup min p(q, p) (28)
010010 aeX PEP
1 01 1 0 1
¢ TS 0 being p any metrics onX. Intuitively, it corresponds to
T7C  — 0 Ty 0 27) the largest empty ball inscribed iK and with the center
’ ¢ 0 TS in X. A criterion that emphasizes dispersion requires that

points be as far away from each other as possible, e.g. the
It can be seen that this approach results with a first mutual distance of the samples must be maximized [7].

column not composed exclusively of ones. This makes Mutual distance ot is defined as:

that the second sample is not as far as possible from

the first one, i.e. the second sample does not maximize pm(P) = min p(z,y) (29)

the mutual distance. Nevertheless, as shown in the next nuer

section, in the long run it results in a better performance,

i.e. in a slower decreasing of the mutual distance. In this paper the mutual distance will be used as the
basic performance index, using the following metrics:
V. COMPARATIVE STUDY « Manhattan distance between the cells codes in the

parameters space.

A. Performance index . . .
« Euclidean metrics between the samples in the

Different uniformity measures have been proposed C-space, in the case &.
in the literature [6]. Perhaps the most useful in path « Standard bi-invariant metrics between the samples in
planning is dispersion, a metrics-based criterion. Let theC-space, in the case 6fO(3). Being R; andRs

X =0, 1]d C R? be the space where to generate samples. two elements ir50(3), this metrics is [11]:



d(R1, R2)
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However, a more useful way to compare the perfor-
mance of the ordering alternatives is the comparison of
the cumulative area (i.e. the integral) of the mutual
distance. This shows how far the samples are being placed
from each other as a progression in the sample number,
visualizing the gain of one method compared to another. Sample

bi-invariant metric mutual distance

250

B. Sampling in %3

200

The first experiment is the comparison of the use of
TS with T4 = T8 in the sampling ofR3. Using M =
3, Figure 2 (top) shows the Manhattan mutual distance
(left) and the mutual distance measured with Euclidean
metrics (right) computed for all the 512 samples of the
sequence. The continuous blue line correspondssto 0
and the red point line t@*. It can be seen in both figures
that continuous line decreases more slowly showing that
this approach gets a better uniform covering of the space
as samples are placed. The cumulative area of theFig- 3. _Top: Bi-invarignt metrics. mutual .dist_a_nce _in the
mutqal distance is .shown in Figure 2 (bottom); as stated fnaé? r?é?guzzﬁlgt(i\% avrvét:iév{h:s j&;:ﬁ% (3?!"nva”am
previously, T provides a better performance.
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C. Samplingin SO(3) VI. CONCLUSIONS

Thce sgcondAexperimBth is the comparison of the Use  The performance of sampling-based path planners re-
of 73" with 7" = T3 in the sampling ofSO(3). lies on the set of samples used. For uniform sampling,
Using M = 3, Figure 3 (top) shows the mutual distance geterministic sampling sequences are a good alternative

measured with the standard bi-invariant metrics for this gjnce they outperform probabilistic methods in terms of
space, while Figure 3 (bottom) shows the cumulative i, dispersion obtained.

area of the previous one. Manhattan mutual distance
results are the same that those obtained¥®r as both
spaces usdj for sampling. Differences between the
two building methods are not obvious using bi-invariant

metrics mutual distance, i.e. in the samplingS(3) ;54 ative study of the performance of different variants
the performance obtained using alternative matriGes of the sampling sequence over tespacesik?, SO(3)

roughly the same. and i’

This paper proposes a simple and yet efficient deter-
ministic sampling sequence computed on a multi-grid de-
composition of a parameter space and the corresponding
mapping to theC-space. The paper contributes with a

Each variant depends on the choiceTgf thed x d
matrix used to generate the orderidg of the 2¢ de-

The last experiment is the comparison of the use of scendant cells of any parent cell. The results of the
TE with T2 and T2 in the sampling ofRS. Using ~ comparative study show that:
M = 1, Figure 4 (top) shows the Manhattan and the « The criterium of maximizing the mutual distance at
Euclidean mutual distances for all the 64 samples of the each new sample aof,, proposed in [7], does not
sequence. Figure 4 (bottom) shows the cumulative area guarantee the best performance in terms of uniform
for both measures of mutual distance. Continuous blue covering; e.g. placing the second sample as far as

D. Sampling in R6

line corresponds t@<’, dashed green line corresponds to possible from the first one greatly constrains where
T2 and dotted red line correspondsTg. It can be seen the next samples should be placed, making them to
that in this case, like ifR3, TdC also provides the best have a lower mutual distance than expected.

uniform coverage of-space. « An useful way to compare the performance of the
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Fig. 4. Top: Mutual distances (Manhattan (left) and Euclidean (right))érsimpling oft® with M/ = 1; Bottom: Cumulative area

in the sampling of® (Manhattan (left) and Euclidean (right)).

ordering alternatives is the comparison of the cumu-

lative area of the mutual distance. This shows how 3

far the samples are being placed from each other as
a progression in the sample number, visualizing the

gain of one method compared to another. Under this [4]

performance measure, the alternati€ provided
the best sampling sequence and is the one proposed
to be applied to sampling-based path planners.

« The performance of a sequence depends on the
C-space where it is used, since the mutual distancel6]

must be measured in the appropriate metrics. In
the case o50(3) differences between the different (7]
variants proposed resulted not significant.
Future work includes the implementation of the pro- i8]
posed deterministic sequentﬂdp in a PRM planner to
prove its performance in a challenging test, e.g. the bend-
corridor problem with different degrees of freedom. 9]
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