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Pedro Iñiguez† Jan Rosell∗

†Dept. Electronics and Automatic Eng. ∗Inst. of Industrial and Control Eng.

Rovira i Virgili Univeristy Technical University of Catalonia

Tarragona, SPAIN Barcelona, SPAIN

Abstract

This paper presents a lazy procedure that enhances the

performance of a robot motion planning method, called

PHM, that uses a potential-field approach based on har-

monic functions together with a random sampling scheme.

The harmonic functions used to guide the solution path are

computed over a 2d-tree decomposition of a d-dimensional

Configuration Space that is obtained with probabilistic cell

sampling. This paper proposes a lazy variant of the PHM

planner that eliminates, reduces or delays as much as

possible any time-consuming computation. The proposed

approach , therefore, makes the planner computationally

more efficient.

1 Introduction

The planning of collision-free paths for a robot through

the obstacles in a workspace is a difficult problem that

is usually tackled in the robot’s Configuration Space

(C-space). The dimension of the C-space is generally high,

since it is equal to the number of degrees of freedom of

the robot, and the exact characterization of the obstacles

in C-space (C-obstacles) is a barrier that precludes the use

of many motion planning approaches. This is the rea-

son why sampling-based motion planners, like Probabilis-

tic Roadmap Methods (PRMs [1]) or those based on the

Rapidly-exploring Random Trees (RRT [2]), are giving

very good results in robot path planning problems with

many degrees of freedom.

Other path planning approaches, like those based on

potential-field methods have also given good results, al-

though not in so high dimensional C-spaces, since usually

an approximate decomposition of C-space is required [3].
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Among them, those based on harmonic functions are in-

teresting because they give rise to practical, resolution-

complete planners without local minima [4].

The Probabilistic Harmonic-function based method

(PHM) previously proposed by the authors [5], is an at-

tempt to extend the use of potential-field based methods to

higher dimensional C-spaces. The basic idea is to combine

them with a random sampling scheme (in a similar way as

roadmap methods gave rise to PRM). The harmonic func-

tions used to guide the solution path are computed over a

2d-tree decomposition of a d-dimensional C-space that is

obtained with a probabilistic cell decomposition (cell sam-

pling and classification). A similar approach in this line

is performed in [6], where a collection of spherical balls

of different radius covering the free C-space is incremen-

tally built following a sampling-based technique and used

to compute a global navigation function.

The present paper is devoted to enhance the PHM plan-

ner following a lazy philosophy. Lazy evaluation ap-

proaches have already been used in PRM-like planners giv-

ing very good results [7] [8]. The present proposal is based

on the dynamic combination of the computation of the har-

monic functions and the search of the solution path that

allows: a) to use a less expensive cell classification pro-

cedure; b) to perform a late cell evaluation; c) to use har-

monic function values to bias cell sampling towards the

more promising regions; and d) to use the minimum re-

quired resolution level. All these factors eliminate, reduce

or delay time consuming computations as much as possible

and, therefore, accelerate the finding of a solution path.

The paper is structured as follows. Section 2 reviews

the basic PHM path planning method. Section 3 reviews

the improvements proposed based on a lazy approach. Fi-

nally, Section 4 presents the modified PHM algorithm and

Section 5 summarizes the contributions.
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Figure 1: Cell codes for different levels in the hierarchy in 2D C-spaces: a) level 0, b) level 1, c) level 2; and d) An example

of the codes of white cells of a quadtree.

2 Basic PHM approach

2.1 C-space decomposition

The following 2d-tree decomposition of a

d-dimensional C-space is considered [9]. An initial

cell, b0, covering the entire C-space is the tree root (b0 is

considered to have sides with unitary size). The levels in

the tree are called partition levels and are enumerated such

that the tree root is the partition level 0 and the maximum

resolution corresponds to partion level M . Partition levels

are denoted by super-indices: a cell of a given partition

level m is called an m-cell, and denoted as bm. The

m-cells have sides of size sm = 1/2m.

A code convention that univocally labels and locates

each cell of the 2d-tree decomposition of C-space is used.

With this code convention, any subset of cells, e.g. those

belonging to the subset Cfree of collision-free configura-

tions, can be managed as a list of codes, in a similar way

as the linear quadtrees proposed in [10] for d = 2.

The cell codes are non-negative integers that univocally

locate the cells in C-space. The codes for a given partition

level m range from Cm
ini to Cm

end, with:

Cm
ini =

2dm − 1

2d − 1
(1)

Cm
end = 2dCini (2)

Since Cm
ini = C

(m−1)
end + 1, the proposed code conven-

tion uses all non-negative integers. Figure 1 shows the

codes used for the cells of different partition levels for a

2D C-space.

2.2 Harmonic Functions

An harmonic function φ on a domain Ω ⊂ ℜn is a func-

tion that satisfies Laplace’s equation:

∇2φ =

n∑

i=1

∂2φ

∂x2
i

= 0 (3)
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Figure 2: Neighbor cells of different size used to compute

the harmonic function at bk. Cells b2, b3, b4 and b5 are

M -cells.

Harmonic functions are useful for motion planers based on

potential-field methods since they do not have local min-

ima [4]. The solution of the Laplace’s equation is usually

found numerically using finite difference methods, i.e. by

sampling φ and its derivatives on a regular grid and us-

ing relaxation methods. Solutions over a non-regular grid

like a 2d-tree decomposition are also possible. Let bk be a

given cell, N be the actual number of neighbors of bk, and

Wj be the number of M -cells that can be contained in the

border between bk and a neighbor cell bj . Then, the value

uk of the harmonic function, called the HF-value, at bk is

computed as the following weighted mean [9]:

uk =

∑N

j=1 Wjuj

Nmax

(4)

As an example, in Figure 2 N = 8, Nmax = 16 and:

uk =
2u1 + u2 + u3 + u4 + u5 + 2u6 + 4u7 + 4u8

16
(5)

Given a 2d-tree decomposition of the C-space where the

neighboring relationship between cells is known, the relax-

ation methods are applied all over the free cells in a hier-

archical top-down manner, i.e. the HF-values are consecu-

tively computed from level 0 to level M in an iterative way

until the convergence is attained. The obtained solution de-

pends on the boundary conditions: the Dirichlet boundary



a) b)

C-obstacle

Partially free

Free subspace containing bini and bgoal

Cells

Cells

Initial Cell

Free Cells

Goal Cell

Figure 3: a) Harmonic function computed over the free cells of a non-regular grid using the Dirichlet boundary condition

(note that the final HF-value of the cells in free subspaces not containing bini and bgoal is equal to the fixed high HF-value

of the obstacles); b) Solution path obtained following the negated gradient after having explored few cells.

condition is used, which sets the C-obstacle cells at a fixed

high value and the goal cell at a low one. The initial value

of u for the rest of the cells is set at an arbitrary middle

value between both extremes.

2.3 PHM procedure

The basic PHM path planning algorithm was introduced

in [9]. It combines a random cell sampling algorithm

with the path planning performed using harmonic func-

tions:

• Cell sampling: Cell sampling is done from the set

G of partially free cells (gray). Initially G contains

the cell b0 covering the whole C-space. Sampled cells

are classified by a distance checker to be free cells

(white), obstacle cells (black) or partially free cells.

Free and obstacle cells are stored, respectively, into

sets W and B; partially free cells are subdivided and

stored in G to be explored later. Cells in G are of dif-

ferent size and sampling probability is set increasing

with its volume. This leads to a rapid characteriza-

tion of the C-obstacles, since the uncertainty of big

partially free cells is elucidated earlier.

• HF-Path planning: Harmonic function values are

computed over the free cells, i.e. obstacle cells and

partially free cells are considered as C-obstacles. A

channel is then searched from the initial cell bini to

the goal cell bgoal following the negated gradient.

Harmonic functions do have a unique minimum and

therefore a solution path is found if it exists.

• PHM combination: The previous two steps are con-

secutively performed until a path is found or a max-

imum predefined number of cells has been explored,

i.e if no path is found between bini and bgoal more

samples are required and more cells must be sampled.

The PHM algorithm is as follows:

PHM-Path Planning(bini, bgoal)

G← b0

B ← ∅

W ← ∅

DO

{G,W,B} ← Sample(G)

H ← Compute Harmonic Function (W )

p←Find path(H, bini, bgoal)

IF p 6= ∅ RETURN p

WHILE p = ∅ or n < Nmax

RETURN ∅

END

As an example, Figure 3 shows the harmonic function

computed over the free cells of non-regular grid, that is

used to find the solution path following the gradient de-

scent. The PHM algorithm has been able to find the path

having explored few of the cells of the C-space.

3 Lazy PHM proposal

In order to accelerate the finding of a solution path, the

following improvements are introduced to the basic PHM



path planning algorithm that eliminate, reduce or delay

as much as possible computations that are time consum-

ing:

• In order to classify cells as free, obstacle or partially

free cells without using costly distance computations,

a probabilistic cell classification is proposed based on

simple collision-check tests(Section 3.1).

• A late cell evaluation is proposed: solution paths

with partially free cells are allowed, which delays

collision-check tests until the end of the procedure

(Section 3.2).

• Importance sampling is proposed in order to focus

sampling in most promising regions and avoid sam-

pling in areas that have no chance of containing a so-

lution path (Section 3.3).

• A control of the level of resolution is proposed in or-

der to find the solution using the minimum required

resolution level (Section 3.4).

These proposals are detailed in the following subsections.

Some of them are (partly) introduced in [5] and [11].

3.1 Probabilistic cell classification

The basic PHM approach relies on the availability of

a distance checker able to provide both positive and neg-

ative (penetrating) distances in order to classify the cells.

This requirement can be simplified to the availability of a

collision checker if a probabilistic cell classification is per-

formed, i.e. if a cell is classified as a function of the results

of the collision checker at a discrete set of configurations

of the cell.

The cell classification procedure is as follows. A given

m-cell is classified depending on the result of a collision

check performed at the configuration of its center and at the

configurations of the centers of its subcells. These configu-

rations are obtained by a deterministic sampling sequence

that provide them in a low-dispersion order. The maxi-

mum number of configurations generated by the sequence

to classify the cell is:

J =
M∑

i=m

2d(i−m) (6)

that corresponds to the cardinality of the set composed of

the given m-cell and all of its subcells, of levels ranging

from m + 1 to M .

Not all the J samples are needed to proceed with the

cell classification. Instead, cell classification is performed

with a subset j < J of configurations, and updated each

time new sample configurations are provided:

G

G G

W

B

B B

W

a)

b)

x2
x2

x2x2

x1

x1

x1x1

Ccolor =
17

21

Ccolor =
2

5

Ccolor =
2

5

Ccolor =
1

5

0

0

0

0

1

1

1

1

2

2

2

2

3

3
3

3

4

4

5

5

6

6

7

7

8

9

10

11

12

13

14

15

16

Figure 4: Classification of a (M − 2)-cell: a) the cell is

classified as a free cell with Ccolor = 17
21 ; b) the cell is

subdivided into free, obstacle and unknown subcells.

• If the result of the collision-check is the same for all

the j configurations then the cell is classified as a free

cell if the configurations are collision-free, or obstacle

cell, otherwise. In these cases, the following degree of

certainty, called color certainty, is assigned to the cell:

Ccolor =
j

J
(7)

As an example Figure 4a shows a cell classified as a

free cell with Ccolor = 17/21.

• If the result of the collision-check is not the same for

all the j configurations then the cell is subdivided as

necessary until the obtained subcells contain only free

configurations, or obstacle configurations, or do not

contain any sample at all. In the first two cases these

subcells are classified as free or obstacle cells (with

their own degree of certainty), and those void sub-

cells are classified as unknown subcells. As an ex-

ample Figure 4c shows a (M − 2)-cell where the first

seven samples are classified as obstacle but the eighth

(sample number 7) is classified as free. The cell is

partitioned into: a white M -cell with Ccolor = 1, two

black (M − 1)-cells with Ccolor = 2/5, one black

(M − 1)-cell with Ccolor = 1/5, and three gray M -

cells.

Cells classified as free are stored in W , those classified

as obstacle are stored in B, and those classified as unknown

are stored in G.
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Figure 5: Cell sampling disabled at cells that cannot be on

the solution path because their HF-value is greater than

the HF-value at bini.

3.2 Late cell evaluation

The basic PHM approach computes the harmonic func-

tion over the white cells, which requires that a lot of cells

be explored in order to be able to find a solution path. This

can be relaxed by allowing the harmonic function to be

computed over the white and gray cells. As a consequence,

the solution path obtained must be verified to effectively be

collision free, i.e. gray cells of the solution path must be

verified to be white cells.

3.3 Importance sampling

In the basic PHM approach the cell sampling is biased

only by the cell sizes (bigger cells have a greater sampling

probability), i.e. the probability P to sample a cell bm
k is

weighted by 2−m. The lazy PHM variant also weights the

the probability P to sample a cell bk by other two fac-

tors:

• Color certainty: weights the degree of knowledge of

the occupancy of the cell. In the lazy PHM variant,

not only the cells in G are to be sampled, but also

those cells in B and W that do not have their color

certainty equal to one. The less knowledge of a cell

the higher its probability of being sampled (the weight

is set to zero for the free and obstacles cells that have

a color certainty equal to one, and to its maximum for

the cells of G because they have color certainty equal

to zero) [11].

• HF-value: weights the chance of a cell to be on the

solution path, i.e. this factor makes P greater for cells

near the goal cell (that have a lower harmonic func-

tion value) and makes P equal to zero for those cells

that cannot be on the solution path (because the solu-

tion path is found following the negated gradient and

their harmonic function value is higher than the cor-

Control Cells

Goal 

Cell

Initial

    Cell

Figure 6: The extremes of a broken path are labelled as

control cells and used to compute an harmonic function

that bias the sampling towards their environment.

responding to the initial cell - see the blue cells in

Figure 5) [5].

This use of harmonic function values to bias the sam-

pling can be further exploited if combined with the late cell

evaluation commented in Section 3.2. If as a result of the

evaluation of a path a set of few free non-connected seg-

ments is obtained, the extreme cells of those segments are

labeled as control cells and used as follows. A secondary

harmonic function is computed fixing the initial, the goal

cell and all the control cells at a low potential. This sec-

ondary harmonic function is used to bias the probability of

cell during the next cell sampling, i.e. cells near the control

cells will have lower HF-value and hence a greater proba-

bility to be sampled. Figure 6 shows two free segments

obtained after evaluating a solution path. Their extremes

are labeled as control cells.

3.4 Resolution level

If a solution path exists with a clearance 2−c then, this

path can be found using a multi-grid with a maximum par-

tition level M = 2c (since the narrowest part of the so-

lution channel will be composed of 2c-cells, of size twice

the clearance). Then, there is no point in sampling cells of

the C-space of partition levels m > M because a path with

maximum clearance is usually desired.

Therefore the lazy PHM variant is implemented with

a variable maximum partition level M , i.e. initially the

maximum partition level is fixed to an initial value M0 and,

if after some trials no path is found, M is increased and the

path planning resumes.

4 Lazy PHM algorithm

The proposed improvements detailed in the previous

section are incorporated into the lazy PHM algorithm,



shown below, that uses the following functions:

• Compute HF: Computes the harmonic function over

the white and gray cells. If control cells are passed

as parameter then they are fixed at low potential to be

used to bias the following cell sampling.

• Sample: samples a set of cells of C-space with the

sample probability P that considers the cell size, the

color certainty and the HF-value, and classifies each

cell into sets G, B and W (updating the color cer-

tainty and subdividing them if necessary).

• Find path: searches a path following the gradient de-

scent and, if found, evaluates the cells that are not

free (i.e. the gray cells and the white cells with

Ccolor < 1). If a free path is found it is stored in p;

otherwise p is set to null and then the control cells are

stored in c.

PHM-Path Planning(bini, bgoal)

G← b0

B ← ∅

W ← ∅

M ←M0

DO

{G,W,B} ← Sample({G,W,B},H)

H ← Compute HF (W,G)

(p, c)←Find path(H, bini, bgoal)

IF p 6= ∅ RETURN p

IF c 6= ∅ THEN H ← Compute HF (W,G, c)

IF n > Pmax THEN M ← M + ∆M

WHILE p = ∅ or n < Nmax

RETURN ∅

END

5 Conclusions

Following a lazy philosophy this paper has introduced

improvements to PHM, a path planning method based on

the combination of a random sampling scheme (used to ex-

plore the C-space) and a potential-field method based on

harmonic functions (used to find a path following a gra-

dient descent). The lazy PHM variant uses all the bene-

fits of the combining of both methods. Besides the gra-

dient descent guiding, harmonic function values are now

also used to bias the random sampling, thus focusing the

C-space exploration towards the more promising regions.

Also, collision-checks are delayed as much as possible by

computing the harmonic function over the free and par-

tially free cells, and cell evaluation is made probabilistic

and based on collision-check tests instead of computation-

ally expensive distance tests. Finally, the maximum grid

resolution is now controlled allowing to find the solution

using the minimum required resolution level. All these

proposals eliminate, reduce or delay time consuming com-

putations as much as possible and, therefore, make PHM

computationally efficient.
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