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Abstract. Autonomous indoor robots are supposed to accomplish tasks, like serve
a cup, which involve manipulation actions, where task and motion planning levels
are coupled. In both planning levels and execution phase, several source of fail-
ures can occur. In this paper, an interpretation ontology covering several sources of
failures in automated planning and also during the execution phases is introduced
with the purpose of working the planning more informed and the execution prepared
for recovery. The proposed failure interpretation ontological module covers: 1) ge-
ometric failures, that may appear when e.g. the robot can not reach to grasp/place
an object, there is no free-collision path or there is no feasible inverse kinematic
(IK) solution. 2) hardware related failures that may appear when e.g. the robot in a
real environment requires to be re-calibrated (gripper or arm), or it is sent to a non-
reachable configuration. 3) software agent related failures, that may appear when
e.g. the robot has software components that fail like when an algorithm is not able
to extract the proper features. The paper describes the concepts and the implementa-
tion of failure interpretation ontology in several foundations like DUL and SUMO,
and presents an example showing different situations in planning demonstrating the
range of information the framework can provide for autonomous robots.

1 Introduction

Challenging robotic problems, e.g. assembly tasks in cluttered environments, require plan-
ning at task and motion levels. For both levels, the use of knowledge may enhance plan-
ning and robot capabilities, giving more autonomy to the robots [1, 2]. The enhanced robot
capabilities include the capture of rich semantic descriptions of the scene, knowledge
about the physical behavior of objects, and reasoning about potential manipulation ac-
tions.

Different tasks may have different grades of complexity, both at symbolic and geo-
metric levels, as well as regarding the dependence between them. Logic states and actions
have to be mapped to geometric instances, and a state transition can only occur if the
action is geometrically feasible. A smart combination of task and motion planning capa-
bilities that produces fewer failures in both levels is required to make the process efficient
— e.g., the symbolic planner should not ask too many impossible quires from the motion
planner. For robotic systems that need an interplay between symbolic and geometric plan-
ning, interpreting failures, diagnosing their causes, and figuring out the proper solutions
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for failure recovery is essential for both automated planning and execution phases. This is
true for robotic systems based on heuristic search classical planning approaches [3] or for
ontology-guided assembly planning [4].

Various studies have investigated the use of knowledge in the form of ontologies for
the detailed description of failures in several robotics fields such as electronic industrial
applications[5] or in manufacture kitting applications [6]. Several sources of failures types
have been analyzed and categorized. Geometric failures related to reachability and action
feasibility are described in their relationship to their causes (missing IK solution or de-
tected collision) [7]. Failures related to motion planners not finding collision free trajec-
tories have also been ontologically described [8, 9]. The Unified Foundational Ontology
(UFO) [10] was proposed as a reference conceptual model (domain ontology) of software
defects, errors and failures, which takes into account an ecosystem of software artifacts.
Although the aforementioned works describe failure types, they are very task specific, do
not use any sort of interpretation mechanism to diagnose the reason of failure, and don’t
reuse such a mechanism in a generic way. Also, there are few works considering failures
of planning and run-time phase for the automated manipulation domain and representing
such failure knowledge in a generalizable, shareable ontology format.

2 Problem statement and approach overview

We are mainly interested in assembly manipulation tasks for bi-manual robots, which
often encounter complexity or failures in the planning and execution phases. Planning
phase failures typically refer to failures of the planner itself, but we will use planning
phase failures to also refer to situations where the planner reasons that some action would
be infeasible, e.g. because objects block access to what the robot should reach. A correct
selection of grasps and placements must be produced in such an eventuality. Depending
on the type of problem, goal order must be carefully handled especially in the assembly
domain; very large search spaces are possible, requiring objects to be moved more than
once for achieving the goals. Execution phase failures refer to hardware failures related to
the system devices— e.g. robot or camera needs to be re-calibrated—, or software failures
related to the capabilities offered by specific software components, or failures in action
performance such as an unexpected occluding object, or slippage.

To accurately capture, share, and reuse knowledge about failures, we propose an on-
tological model of failure interpretation under several foundations like SUMO [11] and
DUL [12]. SUMO provides a conceptual structure that can be used and integrated with
other specific ontologies developed for the robotics and automation domain, meanwhile
DUL organizes concepts in a descriptive way, attempting to catch cognitive categories.
It brings along modeling constraints which guide the development of domain ontologies
in such a way that they may support complex reasoning tasks. The ontological formula-
tion provides a common understanding for the robot to interpret the causes of the failures
in automated planning and execution and find solutions. This paper contributes with an
ontology for failures in automated planning and execution phases. The contributions are:

1. Ontology formulation: Introduction of an ontology to describe different types of fail-
ures in the automated manipulation planning domain.
2. Modeling in different foundations:

— For robotics domain: Modeling the absolute abstract concepts under robotics
upper-level ontologies such as CORA, which uses the SUMO ontology as an
upper level.

— For engineering domain: Modeling the absolute abstract concepts under very
generic foundational ontologies such as DUL.
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3. Use of the failure ontology: Description of how to use the failure ontology in a task
and motion planning (TAMP) process, such as heuristic search classical approaches
or the knowledge-enabled approaches, and in a static code analysis.

For the case study, we use the concept of workflow, that represent the structure of a task
by subtasks linked via conditional transitions between them. In this framework, knowledge
modeling for robot assembly execution includes a model of conditional workflows, soft-
ware services, and robot tasks that can be automatically executed by the workflows, and a
way of interfacing existing components of a robot control system.

3 Ontology driven failure interpretation

The higher level concepts in the proposed ontological module are presented. The onto-
logical module consists of two ontologies: failure ontology and geometric one as a sub-
module. The combination is required when we report the geometric failure failures in
the manipulation domain. The concepts are absolute term that cope with the modeling
formalism. Moreover, some basic concepts, without being formally defined, like Agent,
Plan, Task, Goal or event are used. The two ontologies concepts are described below using
description logic (DL).

3.1 Concepts describing failures

Task failure A situation which interprets a series of Events as the failed plan or execution
of some task(s). In other words, there needs to be an Event, with an Agent as an effective
cause; further, the Agent should be pursuing some Goal, which it does by following a Plan
to complete a Task. This situation is described by a Failure narrative. For example, a robot
has the task to serve a cup from a tray to a table. While in transit, the robot drops the cup
and it shatters. The collection of events, together with the knowledge of the robot task and
goal, constitutes a failure situation.

Failure Narrative A communicable description of a Task failure situation. It defines
several roles, to be filled by an Agent, Task, and a Goal. It uses a Failure symptom to
classify the Action that the Agent performed, and may provide an Explanation for the
failure in a Failure diagnostic.

Failure symptom and Failure diagnostic is a simple classification label which can be
applied to events or event series in order to interpret them as a failure of some sort. Failure
symptoms include software error codes and signal or exception types. For example, when
a robot controller raises a “hardware error signal”’, we would say the robot classified an
event as being a hardware failure. Error status codes in query returns are another subtype
of failure symptom; e.g., the status code that an IK solver would use to indicate it found
no solution. Sometimes software signals or exceptions come with more data attached to
them in order to identify the failure cause; for example the hardware error signal might
also include which motor is thought defective. This extra information is the Failure diag-
nostic. The concepts above are defined via their relations to foundational ontologies (DUL
or SUMO; see Sec. 4). Also, a taxonomy of failure symptoms is defined, as follows. One
dimension of classifying failures is the “when” of happening: Inception failures (prevent
an action from starting; e.g. CapabilityFailure), Performance failures (prevent an action
from completion; e.g. ResourceDepletionFailure), End state failures (the outcome of a
completed action is not conformant to the goal; e.g. ConfigurationNotReached). Failures
are also classified by the nature of participants. Currently there are three top-level classes
for this dimension: Cognition failure, Communication failure, and Physical failure.
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CognitionFailures classify events involving only an Agent and whatever internal repre-
sentations it uses. CommunicationFailures classify an Event that involves some Agents
exchanging information. Finally, Events with only Physical object or Agent participants
can be classified as PhysicalFailure; e.g., the robot not being able to manipulate an ob-
ject becasuse of it being too far (ReachabilityFailure) or because the gripper is broken
(EndEffectorFailure).

For failures where it makes sense to identify a physical location, there is a classi-
fication along the “where” of occurrence. So far, this is only seen in the taxonomy for
embodied Physical agents, and failures may be classified as Body part failure (example,
TorsoFailure). There is a dimension of classifying failures along the “what” of the rele-
vant interaction. So far, this is done only for PhysicalFailures, which can be Mechanical
failures or Electrical failures.

3.2 Concepts describing geometric queries

Since one of the main focus on the proposed failure interpretation ontology is the geomet-
ric failures, an ontological module is defined to cover geometric notions used in robotics
such as collision, placement feasibility, etc. The concepts in this ontology also describe ge-
ometric querying, query status, and status diagnosis. A more specific geometric ontology
module contains terms for particular queries such as IK (inverse kinematics) for a specific
robot. To describe geometric failure, the following terms in the ontology are included.

Geometric querying An Event in which some (software) spatial reasoner— e.g. a col-
lision checker— participates, and which is classified by/executes a GeometricReasoning-
Task. It is defined as GeometricQuerying — T (JisClassifiedBy.GeometricReasoningTask)
M (3hasParticipant.SpatialReasoner) 1 (=1hasStatus. QueryStatus). We also say that Ge-
ometricReasoningTaskC Y isExecutedBy.GeometricQuerying.

Spatial reasoner A software component used to answer geometric queries. For exam-
ple, for checking reachability, an IK solver can be used as a SpatialReasoner. The spatial
reasoner is represented as a SpatialReasonerC_ComputationalAgent. Several types of Spa-
tialReasoner: CollisionChecker, IKSolver, MotionPlanner are proposed in this ontology.

Query status The outcome of a GeometricQuerying. If failure, it means the query was
not answered at all, and the reason is given. Such reasons include the geometric component
responsible for the query not answering in time or being unavailable. If success, it means
the query has been answered, and the answer can further be interpreted to ascertain what
it implies for an actions feasibility. Note that “query failure” is used for situations where
no answer at all is given; “geometric failure” for situations where an answer is given, but
it is not satisfactory for some constraint. E.g., an IK solver returning it failed to find a
solution is not a query failure (the IK solver works well) but it is a geometric failure (a
ReachabilityFailure).

Status diagnosis Information to support the analysis of geometric query answers.

4 Modeling of failure ontology under different upper level
foundations

Aiming at making the failure ontology sharable and widely used, it has been formalized
under SUMOJ[11] and DUL[12] foundations, as shown in Table 1. The upper-level on-
tologies SUMO and DUL foundations are used because of their abilities to cover several
concepts related to robotics but also more general domains. Several ontology frameworks
are defined under those upper-levels, such as [1], to facilitate the incorporation/importing
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of different ontologies with the same common vocabularies while avoiding semantic con-
flicts. This way of modeling becomes essential in large-scale research and development

projects.

Table 1. Modeling the failure ontology under the DUL and SUMO foundations.

Concept |[DUL DL description SUMO DL description
EventType C Conlceplf
EventType T (Vclassifies.Event) i ss
Failure Event type: A Concept Failuregymplom C EventType Class: similar to Sets, foflureSymplom = Cl‘:hb_v =1 - N
symptom that classifies an Event. | FailureSymptom C Vclassifies. but not assumed to be|FailureSymptom C V instance ™ ~.AgentPatientProcess
An event type describes (3hasParticipant. Agent)  [extensional, i.e. distinct
how an Event should be classes may have the
interpreted, executed, ex- same ~members. Mem-
pected, seen, etc., accord- berslpp decided by some
ing to the Description condition.
that the EventType isDe-
finedIn (or used in)
Role T Concept i i
Failure Nar-|Role: A Concept that|Role & vdassll)ﬁes.object Class: similar to Sets, Fa{lureNarral}veRole = lexss 1 A
rative Role FailureNarrativeRole (_Role FailureNarrativeRole C V instance ™ *.Object

classifies an Object

but not assumed to be
extensional, i.e. distinct
classes may have the
same members. Mem-
bership decided by some
condition.

Failure Nar-
rative

Narrative: A descriptive
context of situations

NarrativeCDescription
FailureNarrative C Narrative

Proposition: An abstract
entities that express a
complete thought or a set
of such thoughts.

FailureNarrative T Proposition

Task Failure |Situation: A view, consis-
tent with (’satisfying’) a

Description, on a set of

Situation T Jsatisfies.Description
TaskFailure C Situation
TaskFailure C Jsatisfies.FailureNarrative

Propositional attitude:
An IntentionalRelation in
which an agent is aware
of a proposition.

TaskFailure C Propositional Attitude
TaskFailure T Jsatisfies.FailureNarrative

entities.
Failure diag- | Diagnosis: A Description
nosis of the Situation of a sys-

tem, usually applied in or-
der to control a normal

Diagnosis T Description
FailureDiagnosis C Diagnosis

Proposition: An abstract
entities that express a
complete thought or a set
of such thoughts.

FailureDiagnosis T Proposition

behavior, or to explain a
notable behavior (e.g. a
functional breakdown).

5 Case study: Use of failure ontology in robotic assembly domain

5.1 In planning phase

To illustrate our proposal some simulation examples are performed using Rviz [13] for
visualization and The Kautham Project for motion planning [14]. Ontologies are encoded
using the Web Ontology Language (OWL) [15]. The ontologies are designed using the
Protégé (http://protege.stanford.edu/) editor. For a classical task planning approach, a
sequence of actions was computed a combined heuristic task and and motion planner [3].
For knowledge-enabled approach, work-flow ontology is proposed to describe tasks and
actions which are required in task execution.

Some geometric situations are used for testing. The sequence to plan the assembly
operations is: 1) call IK module to check reachability for grasping the objects; 2) call a
collision checker to validate a path to grasp an object. Some failures can happen through
calling these modules. The failures get reported to the planner, where the failures are inter-
preted and a decision on the next action is made. Some situations in manipulation domain
may happen often, such as the case where an object is blocking the chosen configura-
tion to grap/place an object. This situation requires the selection of alternative feasible (or
reachable) grasping poses and/or placements.

For example, as shown in Fig. 1, if the object BottomWing has four grasping poses
from each side gl-g4, the gl and g4 are occluded by the holders of PropellerHolder and
TopWingHolder respectively, that means g1 and g4 are not feasible and the robot is not able
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Fig. 1. Motivating example in assembly domain showing cases that need the planner to use the failure
ontology to interpret query and action results. Description of reachability and collision problems.
The sequence of assemble the Battat toy can be found in https:/sir.upc.es/projects/ontologies/

to reach object BottomWing through them. Meanwhile, the robot may not be able to grasp
the object BottomWing through g2 and g3 because of the infeasibility of IK configurations.
By querying over the proposed ontology, the robot will be able to analyze the cause and
report to the planner (infer a prober solution will be included in our upcoming work).

The failure symptom produced when planning to use g2 and g3 for grasping is a Reach-
abilityFailure, which is a CapabilityFailure, whereas a failure produced when planning to
grasp using gl or g4 is an OcclusionFailure, which is an AffordanceFailure. Both of these
are InceptionFailures which prevent the planned task from even being undertaken. Capa-
bilityFailure can be addressed by generating new capabilities, e.g. selecting new grasping
poses that are reachable. Affordance failures, meanwhile, can be addressed by manipulat-
ing the environment to better expose its affordances, so by generating intermediary goals
of moving the occluders out of the way, the robot can eventually grab the BottomWing.

To interpret the causes of those situations presented in Fig. 1, the geometric ontology
is integrated with the failure ontology as described in Fig. 2. This ontology describes the
failure symptoms, as well as the FailureNarratives which make use of these symptoms to
classify failures. The narratives may include other information to enhance the diagnosis
process, such as the initial goal and participating objects in the agent’s task, and a diagnos-
tic to indicate which component failed. Failure symptoms are ontologically characterized
also in terms of what failure diagnostics they are compatible with; for example, a Reach-
abilityFailure can only be used by a failure narrative where the explanation role is played
by a failure diagnostic that names some IK component as the failure cause. These modules
(i.e, IK and collision check) are low-level modules that the symbolic level considers to be
spatial reasoners.

5.2 Static program analysis in the workflow execution

When writing programs for robots, developing the failure handling branches often takes
considerable time and is a complex, error prone process in itself. An ontology of failures,
as we have presented here, enables reasoning for the analysis of such programs even before
they are run, and may improve the development process by identifying what parts of a
program need strengthening against failure eventualities.
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Fig. 2. An interpretation of blocking object using the proposed failure ontology. The concepts in
blue belong to failure ontology, meanwhile the ones in yellow are from the geometric ontology.

Such reasoning also needs a representation of programs or workflows. From previous
work (currently in review), we take a workflow to be a transition system where the nodes
correspond to tasks, linked by transitions that are conditional on, among other things, task
outcomes including failure signals, if any. Tasks can be “atomic”, but they can also be
described by workflows. When executing a workflow and encountering a non-atomic task,
the execution process will begin following a path through the workflow describing the
non-atomic task, in a pattern similar to invoking a piece of a program called a subroutine
via a shorthand name for it.

The kinds of reasoning questions we will focus on here are the following: 1) Are
there possible failures not included among the outcomes of the workflow describing how
to perform a particular task?, 2) Are the failure outcomes of a workflow actually possi-
ble outcomes of the task described by the workflow?, 3) Are there enough branches in a
workflow to account for the possible failure outcomes of a subtask of the workflow?

For all of these queries, we assume there exists some ontological characterization of
a task, and a workflow that describes how to perform this task. An ontological character-
ization of a task means indicating what kind of task it is, and what restrictions there are
on the participants in an event classifiable by this task. The ontological characterization of
failure symptoms is from our ontology. In effect, the above queries involve answering one
question: for a particular Task, what are the possible failures that can happen? This can
be analyzed using the Distributed Ontology, Modeling and Specification Language (DOL)
[16] pattern below. Here, ExampleTask and ExampleFailure are some named subconcepts
of Task and FailureSymptom respectively, while Ot, Of are an ontology of tasks and our
ontology of failures, respectively.

ontology PossibleFailure[Class: ExampleTask SubClassOf: Task]
[Class: ExampleFailure SubClassOf: FailureSymptom]
[Class: ExampleEvent SubClassOf: Event]
given Of, Ot =
ObjectProperty: isClassifiedBy InverseOf: classifies
Class: ExampleEvent
SubClassOf: (isClassifiedBy some ExampleTask) and
(isClassifiedBy some ExampleFailure)
end

A DL reasoner would be presented with the ontology resulting from applying the
pattern above, which combines an ontology of tasks and other relevant concepts such as
robot parts and objects, with our ontology of failures and the axioms above. The reasoner
would be required to find a model for ExampleEvent. If no such model exists, then the
failure symptom is impossible for the task. This query would be run for every pair of
named task/failure symptom concepts in an ontology.
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Conclusion

This paper proposes the formalization and implementation of the standardized failure on-
tology to extend the capabilities of autonomous robots related to manipulation tasks that
require task and motion planning along with execution. This combination require the inte-
gration of geometric ontology that also proposed here. In the modeling level, the absolute
concepts of both ontologies are modeled under DUL and SUMO foundations to facilitate
the usability for roboticists community. A case study is introduced to illustrate the use of
failure ontology in automated planning and workflow execution phases by proposing the
common situations that could be encountered by such planner. Moreover, some static code
analysis is proposed to analyze the possible failures while executing the tasks.
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