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Abstract— Hierarchical cell decompositions of Configuration
Space can be of great value for enhancing sampling-based path
planners, as well as for other robotic tasks with requirements
beyond the planning of free paths. This paper proposes an
efficient method to obtain a hierarchical cell decomposition of
C-space that is based on: a) the use of a deterministic sampling
sequence that allows an uniform and incremental exploration
of the space, and b) the use of distance measurements to
handle as much information as possible from each sample in
order to make the procedure more efficient. The proposed cell
decomposition procedure is applied to different path planning
methods.

I. INTRODUCTION AND OVERVIEW

Motion planning for robotic applications is usually per-

formed in the robot’s Configuration Space (C-space), where

the robot is mapped to a point and the obstacles in the

workspace are enlarged accordingly (C-obstacles). Due to

the difficulty of the explicit characterization of C-obstacles,

sampling-based method have ousted other classical methods

like those based on cell decompositions.

Nevertheless, cell decomposition methods can still be of

interest to enhance sampling-based methods (e.g. [1], [2]),

or to deal with tasks with more requirements than those of

path planning (e.g. for the generation of a guiding force over

the whole workspace to guide the operator in a teleoperated

robotic task [3]). Obviously those methods are restrained to

low-dimensional C-spaces.

With all these considerations in mind, this paper proposes

an efficient method to obtain a hierarchical cell decom-

position of C-space. The method is based on the iterative

execution of three steps:

1) Sampling: The exploration of C-space is done using

a deterministic sampling sequence (that has a good

incremental and uniform coverage feature) and a local

randomization procedure.

2) Classification and evaluation: Samples are classified

into cells; then a lazy evaluation philosophy is fol-

lowed, i.e. a collision check (with distance informa-

tion) is performed at the sampled configurations only

if the cells that contain them have heterogeneous

samples.

3) Partition: A cell is partitioned if, after having collision-

checked its samples, it does not yet satisfy a given

homogeneity threshold.
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The paper is structured as follows. Section II introduces

an efficient coding of the hierarchical cell decomposition of

C-space. Sections III, IV and V develop, respectively, the

three steps of the procedure. The whole general procedure

for obtaining the hierarchical cell decomposition model of

C-space is summarized in Section VI, and its use illus-

trated through several examples in Section VII. Finally,

Section VIII concludes the work.

II. HIERARCHICAL CELL DECOMPOSITION

MODEL

A hierarchical cell decomposition model of a

d-dimensional C-space can be coded as a 2d-tree in a

d-dimensional parameter space, provided a correspondence

mapping is defined between spaces. This Section proposes a

simple and yet efficient codding of the cells in the 2d-tree.

Let:

• the tree root be a cell with sides of unitary size,

• a cell of a given partition level m be called an m-cell,

• partition levels be enumerated such that the tree root is

partition level 0,

• the maximum resolution level (also called sampling

level) be partition level M ,

• the depth of the 2d-tree be determined by a maximum

allowable partition level P , with P ≤ M .

Then, M -cells are labeled with a code computed from its

indices in the regular grid of level M . Let the index matrix

V M be a binary d × M matrix whose rows are the binary

representation of the indices vM
j ∀j ∈ 1 . . . d of an M -cell

on the regular grid of partition level M , and W ′M be a

d × M matrix of weights, with wij = 2(M−j)d+i−1 for

i ∈ 1 . . . d j ∈ 1 . . . M . Then, the sample code CM is:

CM = V M · WM (1)

where the operation A · B represents the scalar product of

matrices A and B. Fig. 1a shows for d = 2 the regular grid

of level M = 3 with the cell codes. When m < M , m-cells

are labeled with the codes of the first M -cell they contain

(i.e. with the codes of the descendant M -cell with lowest

cell code), as illustrated in Fig. 1b.

III. DETERMINISTIC SAMPLING SEQUENCE

This section summarizes a deterministic procedure, intro-

duced in [4] and based on the cell decomposition model pre-

sented in Section II, that obtains a sequence of M -cells that

incrementally and uniformly cover the space. The procedure

is based on the digital construction method, first proposed
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Fig. 1. Coding of: a) M -cells; b) a hierarchical cell decomposition.

in [5]. The Section ends with a procedure to associate a

configuration of C-space to each of the generated M -cells.

A. Sequence of M -cells

Let:

• k ≥ 0 be the index of the sequence,

• Td be a binary matrix that defines an ordering of the

descendant cells of any given cell, e.g. for d = 2 and

d = 3:

T2 =

(

1 0
1 1

)

T3 =





1 1 0
0 1 0
1 0 1



 (2)

Reference [4] provides a general method to find Td for

any d.

• V M
k be the index matrix corresponding to code k.

• W ′M be a d × M matrix of weights, with w′

ij =

2(j−1)d+i−1 for i ∈ 1 . . . d j ∈ 1 . . . M . (Note that

matrix W ′M coincides with WM if the order of its

columns is reversed).

Then, the sequence of M -cell codes is:

sd(k) = (TdV
M
k ) · W ′M (3)

where the operation AB represents the standard binary

matrix multiplication between matrices A and B.

As an example, with M = 3 and the expression of T2

proposed in (2), the sample corresponding to k = 6 is:

s2(6) =

[(

1 0
1 1

) (

0 1 0
0 0 1

)]

·

(

1 4 16
2 8 32

)

=

(

0 1 0
0 1 1

)

·

(

1 4 16
2 8 32

)

= 44 (4)

The first 20 samples generated by s2(k) are shown in

Table I. Following these sequences over Fig. 1a gives a

good understanding of how they incrementally and uniformly

cover the sampling space.

B. Configurations

A configuration c of C-space is associated to each M -cell

generated using the deterministic sampling sequence intro-

duced. c is called a sample and is obtained by the correspon-

dence mapping function (between C-space and the parameter

space) evaluated at either:

k 0 1 2 3 4 5 6 7 8 9

s2[k] 0 48 32 16 12 60 44 28 8 56

k 10 11 12 13 14 15 16 17 18 19

s2[k] 40 24 4 52 36 20 3 51 35 19

TABLE I

FIRST 20 SAMPLES OF SEQUENCE s2 .

Fig. 2. Configuration generation using the center of M -cells (top) and a
random point inside M -cells (bottom).

• the center of the M -cell, or

• a random point inside the M -cell, or

• a random point inside the P -cell that contains the

M -cell.

Fig. 2 shows the samples1 obtained using the first two

options. Fig. 3 illustrates the last one showing that, in this

latter case, there can be up to 2(M−P )d samples in each P -

cell.

The use of a deterministic sampling sequence of M -cells

allow an incremental and uniform coverage of the whole

C-space useful for the broad exploration that is necessary for

obtaining the cell decomposition. The proposed method to

associate configurations to those sampled M -cells, enhances

the exploration with the following features:

• The (local) randomization allows any configuration

to be chosen, widening the chance of capturing the

C-space.

• The selection of P 6= M allow the possibility of con-

straining the maximum level of partition to a reasonable

value in order to not have too many cells, but with

the possibility of having them with more than a single

configuration.

1For rigid bodies with two d.o.f. of translation the correspondence
mapping is the identity (or a simple scale) and therefore the figures represent
both the parameter space and the C-space.
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Fig. 3. Configuration generation using a random point inside P -cells when
P 6= M . Top: M = 3 and P = 2; Bottom: M = 3 and P = 0.

IV. SAMPLE CLASSIFICATION AND COLORING

When a sample is generated it must be classified into one

of the cells of the hierarchical partition. This is easily done

as follows. Let Lc be an ordered list of cell codes, such that

Lc[j] < Lc[j + 1]. Then, a given sample with code2 si is

classified into a cell with code Lc[j] if:

Lc[j] ≤ si < Lc[j + 1] (5)

This condition can be evaluated using a simple and quick

1-dimensional range searching algorithm over the list of cell

codes.

A parameter, called colori, is associated to each sample

ci to store the information about its free or collision nature.

Following a lazy evaluation approach, not all the samples will

be evaluated. Those not evaluated will have the parameter

set to zero. Those evaluated will have the parameter set as

follows:

colori =







k + (1 − k) r
D

if ci is free and r < D

1 if ci is free and r ≥ D

−1 if ci is not free

(6)

being r the distance3 measurement, k a fixed offset and D

a distance threshold.

The decision to perform the collision-check test or not

depends on the free or collision nature of the samples already

contained in the cell where the sample has been classified.

This is captured through a parameter, called transparency,

defined as follows:

Tj =

∑i=Kj

i=1 colori

Kj

(7)

2The code of a sample is that of the corresponding M -cell.
3The distance considered is the Euclidean translational distance from the

robot to the nearest obstacle in the workspace.
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Fig. 4. Evolution of transparency of a cell of free C-space when the

collision threshold is ∆
+

collision
= 0.2.

where Kj is the number of samples pertaining to the cell.

The transparency satisfies −1 ≤ Tj ≤ 1. It is close to zero

if there are either roughly the same number of (evaluated)

free and collision samples, or a great proportion of non-

evaluated samples. It is close to one of the extremes if

they are mainly either free or collision (evaluated) samples.

Note that samples not collision-checked make the absolute

value of the transparency to decrease. Fig. 4 shows the

evolution of the transparency of a cell of the free C-space:

the transparency decreases periodically while non-evaluated

samples are added to the cell until a collision-check is

performed, making its value to increase.

The transparency of a cell captures its homogeneity. When

the transparency is within a given interval around zero

the cell is not homogeneous and the collision-check test

is required to gather more information, otherwise it is not

necessary, i.e. the following collision-check condition is

proposed:

∆−

collision < Tj < ∆+
collision (8)

being ∆−

collision and ∆+
collision fixed thresholds with values

ranging between -1 and 0 and between 0 and 1, respectively.

If condition (8) holds and the cell contains samples

not collision-checked, then the collision-check is iteratively

performed to the configurations of the not-checked samples

until the condition does not hold any more, or until the last

one is checked.

Fig. 5 illustrates how the number of evaluated samples in-

creases for higher absolute values of the collision thresholds.

V. CELL PARTITION

A partition condition is verified at the m-cell that contains

the generated sample if it is not of the maximum partition

level, i.e. m < M , and after having performed the collision-

check test. The cell may need to be partitioned if it still is not

homogeneous enough. This is evaluated with the following

proposed partition condition:

∆−

partition < Tj < ∆+
partition (9)

being ∆−

partition and ∆+
partition two thresholds ranging be-

tween -1 and 0 and between 0 and 1, respectively.
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Fig. 5. Top: Collision thresholds |∆−

collision
| = |∆+

collision
| = 0.2;

Bottom: Collision thresholds |∆−

collision
| = |∆+

collision
| = 0.4. The

number of evaluated samples increases when the absolute values of the
collision thresholds are higher. Free samples are drawn in green, obstacle
samples in red and non-evaluated samples in gray. Cells are drawn in gray
tones proportional to the transparency.

If condition (9) holds then the cell is partitioned into its 2d

descendant cells, and the transparency recomputed for each

descendant cell.

Fig. 6 illustrates the effect of this condition. In Fig. 6

(bottom) the distance threshold D is set higher than in Fig. 6

(top). For higher values of D the color of the free samples

gets lower, as shown in (6), and therefore the transparency

of the cell where they pertain too. As a consequence, in this

case condition (9) holds more easily and more partitions are

performed.

This partition condition can be enhanced if thresholds

∆−

partition and ∆+
partition can, each one, take two possible

values: a lower (absolute) value when the cell does not

contain evaluated samples of different color, and a higher

(absolute) value otherwise. This can force not to have cells

with both evaluated free and collision samples, as shown in

Fig 7 (bottom).

Cells containing the initial and the goal configuration

are labeled as initial and goal cells and are recursively

partitioned until level P is reached, independently of the

partition condition. This can be seen in Fig. 6 where the

initial and the goal configurations, drawn as black squares,

are located in P-cells (in this case P = 4 and M = 5).

Fig. 6. Partition condition with a given partition threshold applied using
different distance thresholds. The effect of distance measurements is stressed
with a biggest threshold D (bottom) that results in a lower cell transparency
and a higher number of partitions (since the partition condition is more easily
hold).

VI. HIERARCHICAL CELL DECOMPOSITION

PROCEDURE

The complete partition algorithm is shown in Fig. 8. Its

use in a C-space with a narrow corridor is shown in Fig. 9

with:

• 100 evaluated samples (top) and 250 (bottom)

• M = 5 and P = 4

• |∆−

collision| = |∆+
collision| = 0.2

• |∆−

partition| = |∆+
partition| = {0.2, 0.9}

VII. EXAMPLES

The C-space partition procedure introduced in this

paper can be applied to different classical path planning

algorithms, giving them particular and interesting features:

Path planning based on harmonic functions: Harmonic

functions are used to compute a potential field without local

minima and, therefore, allows to find a channel of cells

connecting the initial and the goal ones (Fig. 10).

These harmonic functions are usually computed over the

free cells of a regular or hierarchical cell decomposition,

being obstacle cells fixed at a high value. The value of the

harmonic function at each cell is iteratively computed as the

average of the values at its neighbor cells.
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Fig. 7. Top: simple partition condition; Bottom: enhanced partition
condition. In the bottom case, the high value of the threshold is set not
to have cells with both free and collision samples.

Partition(cini, cgoal)

Partition cells until cini and cgoal are located inside a P -cell.

Do:

Get sample from sequence - Equation (3)

Find cell that contains it - Equation (5)

Compute the transparency - Equation (7)

Check collision if condition (8) is satisfied

Partition cell if condition (9) is satisfied

Until K samples have been evaluated

END

Fig. 8. Hierarchical cell partition algorithm.

By using the cell partition introduced here, the com-

putation can be done differently. Now the cells are not

classified as being free or obstacle, i.e. in a binary way,

but in a continuous manner using the transparency. Then,

the harmonic function values can be computed over all the

cells of the partition using the transparency as a permeability

parameter, i.e. the more transparent a cell is the more it is

influenced by its neighbors.

This change makes it possible the use such an interesting

planning method in partially explored C-spaces.

Sampling-based Methods: The samples generated for the

partition procedure can be used to create a roadmap to

search a path between the initial and the goal configurations.

Then, the neighbor relationship between samples can easily

Fig. 9. Partition algorithm applied at a given C-space using 100 evaluated
samples (top) and 250 (bottom).

Fig. 10. Harmonic function computed over a hierarchical cell partition of
the 2 d.o.f. C-space of Fig. 9. The solution channel is shown in green.

be determined by the neighborhood of cells, i.e. the local

planner will try to connect samples of one cell to samples that

lies inside its Manhattan neighbor cells. Also, the weights of

the arcs of the roadmap can be set as a function of both its

length and its distance to the obstacles, since this information

is known for the samples. As an example Fig. 11 shows a

roadmap computed using samples generated for obtaining

the hierarchical cell decomposition.

Fig. 12 shows a 6 d.o.f. example. Fig. 12 (left) shows the

position coordinates of the free and the collision samples

(green and red, respectively; non-evaluated samples are not

shown) illustrating that, like in Fig. 6, the use of a correct dis-

tance threshold allows to have more evaluated samples near

the obstacles’ surface. Free samples have been connected by

a roadmap and used to find the solution path that is shown in

Fig. 12 (right). Collision detection has been performed using

the PQP library [6].
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Fig. 11. Roadmap computed using samples generated for obtaining the
hierarchical cell decomposition. The solution path is shown in red.

Fig. 12. Path planning problem in 3D: Free and collision samples (left);
solution path (right).

A comparative study with using other sampling methods

is reported in [4].

Combined Methods: The combination of both the use

of harmonic functions and sampling methods can take full

potential of the cell partition procedure introduced here. This

is what has been proposed in a novel planner, known as

Kautham planner, proposed in [7].

The interleaving of both methods allow a better bias of

samples towards interesting regions of C-space, like narrow

passages, and therefore a better characterization of the hi-

erarchical cell decomposition using less evaluated samples.

The combination also allows to work with a local roadmap

composed by the samples contained in the cells of the

solution channel, as shown in Fig. 13.

VIII. CONCLUSIONS

This paper has presented an efficient and simple method

to obtain a hierarchical cell decomposition model of C-space.

Its main contributions are the followings:

• The combined use of a deterministic sampling of cells

and a (local) randomization in the selection of the

corresponding configurations, gives the required equi-

librium for the efficient exploration of C-space (i.e. for

obtaining the hierarchical cell decomposition using the

less number of collision-checked samples as possible).

Fig. 13. Kautham planner: local roadmap computed over the channel.

• The information of the distance between free samples

and the obstacles in C-space is used to characterize

the hierarchical cell partition in a more efficient way.

Besides this, the distance information can then be used

to weight the edges of a roadmap build with the samples

used to obtain the partition.

• The hierarchical cell decomposition model generated

does not distinguish between free and obstacle cells, but

instead considers all cells as equal and characterized by

a transparency parameter computed as a function of the

number of free and collision samples they contain (also

considering distance information). The transparency pa-

rameter is used as a control parameter for both control-

ling the necessity of performing collision-checks (i.e.

as a lazy-evaluation control), and controlling the par-

titioning procedure of the cell decomposition. Besides

this, transparency can be envisioned as a parameter for

revisiting classical planning methods like those based

on harmonic functions.
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