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Abstract— The planning of collision-free motions of a hand-
arm system to reach a grasp or preshape configuration is not
a simple issue due to the high number of involved degrees of
freedom. This paper presents an efficient sampling-based path
planner that copes with this issue by considering a reduced
search space. The dimension of this space is not fixed but
it is iteratively increased according to the difficulty of the
task at hand. Initially the search space is 1-dimensional along
the line defined by the initial and goal hand configurations
(by construction those configurations always belong to the
search space), and then its dimension is increased by iteratively
adding principal motion directions (that couple the finger
motions), trying in this way to produce hand movements
through anthropomorphic natural postures.

I. INTRODUCTION

A great amount of work is currently dedicated to human-

like robots, ranging from aspects like the robot appearance

and expression to the mimicking of the human movements

in order to perform a given task. Some basic problems have

to be solved in this line, being one of them the coordination

of movements in a system with a large number of degrees

of freedom, for instance to allow the robot walking or to

manipulate objects. The latter involves the coordination of

the hand-arm system, since most of the tasks that a robot

is expected to do include interaction with the environment,

either grasping an object and moving it to another place or

doing some particular work with it. Solving this problem

requires the planning of the movements of the set hand-

arm in order to find a valid trajectory, i.e. a valid path

in the joint coordinates and a temporal evolution of the

movement of each of them. This problem can be formulated

as a typical motion planning problem in a n-dimensional

configuration space [1], which may allow optimal solutions

according to predefined criteria, but the computational cost

is really high. In order to reduce the computational cost and

look for more practical solutions some know-how about the

reachable space and basic movements of an anthropomorphic

hand should not be missed, and some reduction of the search

space should likely be done, but without losing the human-

like appearance of the movements. This work deals with

this problem, proposing an approach that initially considers

the movements of the arm and the movements of the hand

separately, and then looks for a common solution using a

unique probabilistic roadmap [2], moreover, the search space
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is initially considered of dimension 1, and the dimension is

then progressively increased if no solution is found.

The problem of planning the hand-arm movements was

already tackled considering a search-space with a reduced

dimension in [3]. In that work only a few principal motions

directions of the hand are used to find a collision free path for

the hand-arm, but this constraint in the potential movements

of the hand limits its dexterity in complex environments

(i.e. those with several and/or complicate obstacles) and

generates the need for special movements at the initial and

goal states if they do not belong to the (pre)selected search

space. The approach presented in this work avoids these

problems allowing an incremental hand dexterity, starting

from a simple direct path and arriving to the complete model

of the real problem if a solution is not found on the way.

II. BASIC BACKGROUND

A. Principal Motion Directions

Principal Motion Directions (PMDs) are basically coordi-

nated movements of the hand joints. They can be used to

reduce the problem of planning the motion of a mechan-

ical hand, considering that the human hand also has this

couplings. They are obtained by taking samples of human

hand postures using a sensorized glove, mapping them to the

mechanical hand and then performing a principal component

analysis (PCA) [4] over the set of samples. The samples are

taken with the intention of covering the mechanical hand

workspace. It is worth to note that this mapping is critical

to achieve such a goal, thus the more anthropomorphic the

mechanical hand is, the easier the mapping results.

In this work, the Schunk Antropomorphic Hand (SAH) [5]

is used. It has four identical fingers and one is equipped

with an additional joint to function as the opposing thumb.

Each finger has four joints, one for abduction and three for

flexion, with two of them coupled, having therefore three

degrees of freedom (DOF) per finger. In total, it has 13 DOF.

Nevertheless, the samples are 11-dimensional due to the

mapping from the glove to the hand, since some joints were

attached to a single sensor to give a better immersion to the

user while taking the samples (details on this mapping can

be found in [3]).

The PCA involves the computation of the eigenvalue

decomposition of a data covariance matrix or the singular

value decomposition of a data matrix, usually after mean

centering the data for each attribute. A relevant previous

work uses PCA over an initial set of grasping configurations

to find a bidimensional grasp subspace [6], and further

works have used this subspace to look for static grasping

configurations [7], [8].
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Fig. 1. Mappping from the hand configuration space Ch to the principal
motion direction space E .

The result of the PCA over the set of samples is the

PMD space E , which is basically a new reference frame

located at the mean center value b (see Fig. 1). The PMDs

define a base of E , namely the columns of a rotation matrix

E = (ê1, ê2, . . . , êH), where H is the dimension of the

configuration space of the hand. Thus, the hand workspace

WH is an axis-aligned box in E centered at b and with

the size, λi, of each side chosen proportional to the standard

deviation of the samples along êi, such that the WH contains

around the 95% of the samples.

B. Probabilistic Roadmaps

Probabilistic roadmaps (PRMs) are sampling-based path

planners that randomly generate collision-free samples of

configuration space (C) and connect them with free paths

capturing the connectivity of the free space by forming

graphs called roadmaps [2]. These planners are giving very

good results, being its success mainly due to its sampling-

based nature, i.e. they do not require the explicit character-

ization of the obstacles of C and its efficiency relies on the

sample set. Therefore, the generation of samples is one of

the crucial factors in the performance of these planers.

Probabilistic roadmaps are demonstrated to be probabilis-

tic complete, e.g. for the basic PRM method the number of

samples necessary to achieve a probability of failure below a

given threshold has been determined [9]. For difficult path-

planning problems, however, like those involving narrow

passages or high degrees of freedom robots in cluttered en-

vironments, this number might be quite large and, therefore,

importance sampling or dimension-reduction techniques have

been introduced (e.g. [10], [11]).

The use of a PRM for the planning of anthropomorphic

hand-arm systems based on the reduction of the sampling

space using the principal motion directions was first pro-

posed by the authors in [3]. Following this line, the present

paper focuses on the sampling process by proposing a

more efficient obtention of samples. The main features of

the developed PRM, that improve the approach presented

in [3], are: a) several hand configurations are assigned to

each arm configuration; b) hand configurations are obtained

θa
ini = θa

1
θa

goal = θa
kmax

θa
k

< ∆

Fig. 2. Arm configurations θa
k , equally spaced a distance below a given

threshold ∆, along the rectilinear path joining θa
ini and θa

goal.

from a subspace SCh of the hand configuration space Ch

that, by construction, contains both the initial and the goal

configurations, solving in this way the problem of connecting

them to this subspace; c) the dimension of this subspace

is not fixed but is iteratively increased, as required by the

difficulty of the task at hand; d) the direction of the first

dimension of SCh is defined to always connect the initial

and goal hand configurations.

III. PROBLEM STATEMENT AND PROPOSED SOLUTION

Given the initial and the goal configurations of the hand-

arm system θini = (θh
ini,θ

a
ini) and θgoal = (θh

goal,θ
a
goal),

with θh
ini and θh

goal being the configurations of the hand, and

θa
ini and θa

goal those of the arm, the problem to be solved

is the search of an anthropomorphic-like collision-free path

connecting them.

It is assumed that θgoal is a grasp or preshape configura-

tion that can be reached from θini by a simple arm motion

coordinated with the proper hand motions needed to avoid

collisions with the obstacles. Following this rationale, the

proposed approach is based on the decomposition of the

motions between those of the arm and those of the hand,

and then looking for a common solution using a unique

probabilistic roadmap planner. Moreover, hand motions are

computed in a reduced search space using some principal

motion directions that, besides reducing the number of DOF,

attempt to lead the mechanical hand movements through

anthropomorphic postures.

Section III-A presents the main algorithm (FIND PATH) to

construct the PRM and search for the solution path. This

algorithm makes use of the HAND MOTION algorithm, intro-

duced in Section III-B, to obtain hand configurations using

the reduced search space. Starting with one dimension, this

algorithm is iteratively called with an increasing dimension

until FIND PATH either returns a solution path, or a failure flag

if no path is found and the dimension of the search space

has reached that of the hand configuration space.

A. Main algorithm

Given the initial and the goal configurations of the hand-

arm system θini = (θa
ini,θ

h
ini) and θgoal = (θa

goal,θ
h
goal),

the following algorithm searches for an obstacle-free path

connecting them. The algorithm works with normalized joint

values in the range [0, 1], and thus in an adimensional

configuration space.

Algorithm FIND PATH(θini, θgoal)

1) Generate arm configurations θa
k, equally spaced a dis-

tance below a given threshold ∆, along the rectilinear

path joining θa
ini and θa

goal (Fig. 2). If kmax is the
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Fig. 3. Hand-arm configurations. Arm configurations are represented on the horizontal axis that corresponds to the direction connecting θa
ini and θa

goal.

For j = 1 (left figure), hand configurations are represented by the vertical axis that corresponds to the direction p connecting θh
ini and θh

goal. For j = 2

(right figure) they are represented by the plane defined by Ej and pj .

resulting number of configurations to be generated (due

to the distance between θa
ini and θa

ini), then:

θa
k = (θa

goal−θa
ini)

k − 1

kmax − 1
+θa

ini k = 1, . . . , kmax

2) Create a PRM and look for a solution by iteratively

increasing the number j of DOF used to generate the

hand configurations (see Fig. 3 for j = 1 and j = 2).

For j = 1 to H do:

a) Generate a set S with N hand configurations.

i) With the arm at θ
a
ini, generate N/2 hand con-

figurations using the HAND MOTION algorithm

with j DOF, such that the hand-arm system

is collision-free.

ii) With the arm at θa
goal, generate N/2 hand

configurations using the HAND MOTION algo-

rithm with j DOF, such that the hand-arm

system is collision-free.

b) For k = 0 to kmax do:

With the arm at θ
a
k, locate the hand at each

configuration of S and test whether the hand-arm

system is collision-free.

i) If it is collision-free, add the hand-arm con-

figuration as a roadmap node.

ii) Otherwise, generate both a random hand con-

figuration using the HAND MOTION algorithm

with j DOF, and a random configuration of

the arm on a small neighborhood around θa
k

(defined by a fixed radius ρ).

Check if the resulting hand-arm configuration

is collision-free. Add the hand-arm configura-

tion as a roadmap node if this is the case, or

keep trying until a collision-free one is found

(up to a maximum number T of trials).

c) Complete the roadmap by connecting neighbor-

ing nodes using a simple straight-line local plan-

ner.

d) Search for PATH in the roadmap to connect θini

and θgoal. Return PATH, if found.

3) Return FAILURE

B. Hand motion algorithm

The generation of the hand configurations used in the main

algorithm is done in the following way given the desired

dimension j of the search space.

Algorithm HAND MOTION(θh
ini, θh

goal, E, b, j)

1) Obtain the initial and final configurations of the hand

expressed in terms of the PMDs in E , i.e.:

eini = E−1(θh
ini − b)

egoal = E−1(θh
goal − b)

2) Find a nominal direct path between eini and egoal.

Let e = eini + α(egoal − eini) be the straight line in

E defined by eini and egoal.

Find the intersection points of this line with the hyper-

planes containing each face of the axis-aligned box

WH defining the hand work-space in E (WH was

defined in subsection II-A; see Figure 1 for a quali-

tative 2D illustration). This is simply done by solving

2H linear equations of first order. Since there are

H = 11 PMDs and eini and egoal lie inside the

hand workspace, there are 22 intersection points, 11

of them defined by negative values of α and the other

11 defined by positive values of α.

Let emin and emax be the points defined, respec-

tively, by the greatest negative and the smaller pos-

itive values of α, P be the segment delimited by

emin and emax, emid the middle point of P , and

p = (emax − emin)/2.

3) Re-order the vectors êi of E (Section II-A) according

to the size of the components of p along them, from

the smallest to the largest one. This is done using an
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Fig. 4. Illustration of the search region in a 2D example given ê1, ê2

and p. The blue (dark gray) region is generated sweeping along ê1 the
projection of P onto ê2, and green region (light gray) region is generated
sweeping along ê2 the projection of P onto ê1. Since |p · ê2| < |p · ê1|
the green region is larger that the blue one, so it is more likely to find a
path in the former.

ordering matrix R to update E as

E ← R E and b← R b

such that the resulting vectors êi of

the basis E = (ê1, ..., êi, ..., ên) satisfy

|p · êi| ≤ |p · êk| ∀i < k.

The reason for this order is that the vectors êi will

be iteratively used to increase the dimension of the

search space, and using first the vectors êi with

smaller components along the direction of p will likely

produce a larger search region and therefore increase

the likelihood of finding a solution, as illustrated in

Fig. 4 for a 2D case. It should be noted that this is

an heuristic step, since there is no guarantee that the

order of vectors êi actually allow finding a solutions

with smaller number of iterations (on the other hand,

the size of WH along each vector êi suggests another

possible useful order).

4) Generate the sampling subspace of dimension j as a

subspace of the hand workspace WH :

a) Generate two subspaces of E , one called Ej

defined by the first j − 1 elements of E i.e.

Ej = (ê1, ..., êj−1) is a basis of Ej , and the other

subspace called Ej⊥ defined by the remaining

n− j + 1 elements of E, i.e. Ej⊥ = (êj , ..., ên)
is a basis of Ej⊥.

b) Project p and emid on Ej⊥, and let pj and e
j
mid

be the resultant vector and point, respectively.

c) Obtain the sampling subspace SCj defined by the

orthogonal basis SCj = (Ej ,pj).
Fig. 5 illustrates these steps for a hypothetical

3-dimensional E for the first and second iteration

(i.e. for j = 1 and j = 2).

5) Generate samples e
j
l ∈ SC

j , l = 1, ..., lmax:

a) Generate lmax samples sl in a space of dimension

j with each component in the range [0, 1].

b) Map the samples sl to SCj as

e
j
l = 2sl − 1

Note that the samples could be generated directly

in SCj without using the auxiliar space of vectors

sl, but this option was preferred in order to al-

low future applications of deterministic sampling

strategies on a regular sampling space.

6) Map the samples e
j
l to E as (Fig. 5)

el = SCje
j
l + e

j
mid

7) Map the samples el to the hand work-space expressed

in the joint coordinates, which is done as

θh
l = Eel + b

Thus, the hand joint values1 are obtained from the

initial samples sl as

θh
l = E(SCj(2sl − 1) + e

j
mid) + b

In order to facilitate the understanding, the algorithm

describes the whole procedure to generate the samples of

the hand configuration, but it must be noted that Steps 1

to 3 do not need to be repeated each time new samples need

to be generated for the same task.

IV. IMPLEMENTATION AND EXAMPLES

The proposed approach has been implemented in C lan-

guage and tested on a simulator considering the SAH hand,

with 13 DOF, mounted on a 3 DOF robot arm. Two sce-

narios have been defined, both sharing the same initial and

goal hand configurations θh
ini and θh

goal, respectively. Some

snapshots of hand postures along the motion direction p

connecting θh
ini and θh

goal can be seen in Fig. 6; and those

corresponding to a linear combination of p2 and e1 are

illustrated in Fig. 7.

The variable of the algorithm FIND PATH(θini, θgoal) have

been set to the following values:

• ∆ = 0.04, the distance between arm configurations.

• N = 8j, the number of samples of the set S of hand

configurations, with j the number of DOF used in the

HAND MOTION algorithm.

• ρ = 0.05, the radius defining a small neighborhood

around arm configurations.

• T = 100, the maximum number of trials to obtain a

collision-free hand-arm configuration.

Figures 8 and 9 show snapshots of the solution paths

found, respectively, for the first (less constrained) and the

second (more constrained due to a larger obstacle bar)

scenario. In both cases, the number of arm configurations

considered along the straight path connecting θh
ini and θh

goal

resulted kmax = 8. The solution to the first one was found

sampling the hand configurations only along p. The averaged

computation time over several runs was 3.2 s on a PC 3.0

GHz, and the PRM were composed of a mean of 168 nodes.

1Recall that these are normalized values, i.e. in the range [0, 1]. The joint
angles are then obtained by denormalizing using the joint ranges.
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ê1

ê2
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Fig. 5. Illustration of the HAND MOTION algorithm for a hypothetical 3-dimensional E : a) First iteration, j = 1, showing the direct path in the space
SC1 defined by p; b) Second iteration, j = 2, showing the path in the space SC2 defined by ê1 and p2 ∈ E2⊥.

Fig. 6. Snapshots of hand postures along the motion direction p connecting θh
ini and θh

goal.

p

p2

ê1

Fig. 7. Snapshots of hand postures corresponding to a linear combination
of directions p2 (horizontal) and ê1 (vertical), considered along all their
ranges.

The solution to the second scenario was found sampling

the hand configurations along the subspace defined by p2

and ê1 (note that in this scenario, the sole motion along p

cannot produce the necessary flexion of the index finger in

order to avoid a collision with the obstacle bar - Fig. 9d).

The averaged computation time over several runs was 6.5 s

and the PRM were composed of a mean of 205 nodes. In

both scenarios those configurations closer to the obstacle bars

needed resampling (step 2.b.ii of the FIND PATH algorithm).

V. DISCUSSION AND CONCLUSIONS

An approach to compute the movements of an anthro-

pomorphic hand mounted on a robot arm has been pre-

sented in this work. The proposed approach is intended

to be particularly useful in the final part of a hand-arm

movement, close to the grasp action itself or to a hand-object

interaction, i.e. when the existence of a free path for the arm

considering a bounding box for the hand is unlikely to be

found, and therefore the movements should be planned in a

high dimensional space (defined by the hand-arm degrees of

freedom) requiring a lot of computation.

The key point of the proposed approach is that the search

of a solution path for the hand-arm system is initially

done considering movements of the hand in a 1-dimensional

subspace, and only if no solution is found the dimension

of the search space is iteratively increased. Besides, by

construction, the initial and goal hand-arm configuration

always belong to the search space.

The approach has been implemented and good solutions

were obtained in simulation for the SAH hand, with 13 DOF,

mounted on a 3 DOF robot arm. Nevertheless, the approach

is of heuristic nature and cannot guarantee an optimal perfor-

mance. If the solution is found after a significative number of

iteration the computational cost may be larger than looking

for the solution directly in the search space defined by all
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a) b) c) d) e)

Fig. 8. Snapshots of a successful attempt to connect θini and θgoal on the first scenario (see the accompanying video for the whole sequence).

a) b) c) d) e)

Fig. 9. Snapshots of a successful attempt to connect θini and θgoal on the second scenario (see the accompanying video for the whole sequence).

the DOF of the hand-arm system. Nevertheless, the approach

seems to be efficient for everyday hand movements, avoiding

complicate and unusual hand configurations, and opens a

new direction for future improvements. One potential source

of performance improvement is the selection of a “good”

sequence of PMDs in the iterative dimensionality increase.

We used a particular ordering criterion here but we are aware

that some others producing different sequences also make

sense, thus, exhaustive experimentation should be done to

find out the best criterion. Other topics that deserve further

research in order to improve the generation of the unique

PRM are the influence of the variables of the algorithm and

the way in which the samples of the hand configuration are

replicated for each arm configuration.
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