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Abstract— This paper presents the use of independent contact
and non-graspable regions to generate the grasp space for 2D
and 3D discrete objects. The grasp space is constructed via
a sampling method, which provides samples of force-closure
or non force-closure grasps, used to compute regions of the
graspable or non-graspable space, respectively. The method
provides a reliable procedure for an efficient generation ofthe
whole grasp space forn-finger grasps on discrete objects; two
examples on 2D objects are provided to illustrate its perfor-
mance. The approach has several applications in manipulation
and regrasping of objects, as it provides a large number of
force-closure and non force-closure grasps in a short time.

Index Terms— Grasp space, independent contact regions,
non-graspable regions.

I. I NTRODUCTION

Grasp planning searches for desirable locations of the
fingers on the object surface, for instance, to achieve the
object equilibrium, or to fully restrain the object to resist the
influence of external disturbances. To immobilize the object
the grasp must satisfy the properties of form or force-closure,
depending on whether the position of the contacts or the
forces applied by the fingers ensure the object immobility [1].
These properties have been widely used in the synthesis
of precision grasps (i.e. when only the fingertips touch the
object) for 2D [2] [3] [4] and 3D objects [5] [6].

To provide robustness to the grasp in front of finger
positioning errors, the concept of independent contact regions
(ICRs) on the object boundary was introduced [7]. The
positioning of a finger in each ICR assures a force-closure
(FC) grasp, independently of the exact position of each
finger. The computation of ICRs has been solved for 2D
polygonal [8] and 3D polyhedral objects [5] [9], as well as
for objects of arbitrary shape described by a mesh with large
number of points, for 2D [10] and 3D [11] [12] discrete
objects, and with frictional and frictionless contacts. Asan
opposite concept to the ICRs, this paper introduces the non-
graspable regions (NGRs) such that a finger contact in each
NGR always produce a non-FC grasp, independently of the
exact position of each finger

Most of the works above-mentioned focus on the synthesis
of one grasp that optimizes a particular criterion. However,
in applications such as manipulation and regrasp planning it
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is useful to know all the possible FC grasps or at least a large
number of them, i.e. know the structure of the whole grasp
space. Previous works have tackled the computation of all the
n-finger FC grasps for 2D polygonal objects [2], and all the
3-finger FC grasps for 2D discretized objects [3]; to the best
of the authors’ knowledge, the generic computation of all
then-finger FC grasps for frictional and frictionless contacts
in 2D and 3D discrete objects has not been tackled before.
This paper presents a method to generate the grasp space for
discrete objects using NGRs and ICRs, i.e. to compute all
the FC and non-FC possible grasps.

The rest of the paper is organized as follows. Section II
provides the required background on FC grasps and grasp
space. Section III describes the approach proposed to gener-
ate the grasp space, and Section IV presents the algorithms to
compute the ICRs and NGRs starting from a FC or non-FC
sample grasp, respectively. Section V shows two examples to
illustrate the approach, and, finally, Section VI summarizes
the work and discusses some future applications.

II. FRAMEWORK

A. Assumptions

In this work the following assumptions are considered.
There is a frictional punctual contact between each finger
and the object, with friction being modeled according to
Coulomb’s law. The object surface is discretized in a large
enough setΩ of pointspi, whose positions are described by
one or two parametersu for 2D or 3D objects, respectively,
and the normal direction̂ni pointing toward the interior of the
object atpi is known. Each point is connected with a set of
neighboring points forming a mesh; the number of neighbors
is irrelevant and therefore different types of mesh are valid.

B. Grasp space and force-closure conditions

An n-finger graspG is defined as the set of parametersui

that fix the positions of the fingers on the grasped object
surface, i.e.G = {u1, . . . , up}, with p = n for 2D objects
andp = 2n for 3D objects. Thep-dimensional space defined
by u1, . . . , up is called the grasp space (also known as grasp
configuration space or contact space) [9].

A unitary forcef i applied on the object atpi along the
surface normal direction generates a torqueτ i = pi × f i;
f i and τ i are grouped together in a wrench vector
ωi = (f i, τ i)

T . The resultant wrench applied on the object
can be expressed as a positive linear combination of wrenches
applied at the contact points, which are grouped in a wrench
setW . For frictionless grasps, the grasp forces can only be
applied in the direction normal to the object boundary, thus



W = {ω1, . . . , ωn}. For frictional grasps, the grasp forces lie
inside a friction cone that can be linearized with anm-side
polyhedral convex cone, then the grasping forcef̃ i at the
contact pointpi can be expressed as

f̃ i =
m

∑

j=1

αijsij , αij ≥ 0 (1)

with sij being the unitary vector along thej-th edge of the
convex cone. The wrench produced by the forcef̃ i is

ω̃i =

m
∑

j=1

αijωij , ωij =

(

sij

pi × sij

)

(2)

whereωij is called a primitive contact wrench. Therefore, for
frictional graspsW = {ω11, . . . , ω1m, . . . , ωn1, . . . , ωnm}.

A necessary and sufficient condition for the existence of a
FC grasp is that the origin of the wrench space lies strictly
inside the convex hull ofW , CH(W ) [13]. This condition
is applied in this work using the following lemma [12].

Lemma 1: Let G be a grasp with an associate set of
wrenchesW , I be the set of strictly interior points of
CH(W ), andHk be a supporting hyperplane ofCH(W ) (i.e.
a hyperplane containing the faceti of CH(W )). The originO
of the wrench space satisfiesO ∈ I if and only if ∀k any
point P ∈ I andO lie in the same half-space defined byHk.

In this paper Lemma 1 is used selectingP as the centroid
of the primitive contact wrenches, which is always an interior
point of CH(W ). Then, the test used to verify the FC
property for the graspG checks whether the centroidP and
the originO lie on the same side ofHk ∀i.

III. G ENERATION OF THE GRASP SPACE

The generation of the grasp space is based on the concepts
of Independent Contact Regions (ICRs) and Non-Graspable
Regions (NGRs). The ICRs and NGRs are regions such
that positioning a finger anywhere inside each of them a
FC or non-FC grasp will always be obtained, respectively.
Basically, the algorithm takes a sample of the grasp space,
identifies whether it is force-closure or not, and builds
the corresponding region around it, labeling in this way a
significant number of potential FC or non-FC grasps of the
object. This action can be repeated until a useful portion of
the grasp space is labeled (for instance for grasp or regrasp
planning purposes) or simply until the whole grasp space is
labeled. The algorithm is:

Algorithm 1: Exploration of the grasp space

1) Generate a sample graspG
2) If G has not been previously labeled, test whetherG is a

FC grasp
If G is FC

Compute the ICRs
Label G and every possible combination of grasps
generated by choosing one point from each ICR as
a FC grasp

Else

Compute the NGRs
Label G and every possible combination of grasps
generated by choosing one point from each NGR as
a non-FC grasp

3) If the grasp space is not fully labeled yet (or a particular
condition is not reached) then go to Step 1
Else, Return the grasp space

The sampling method used to generate samples in Step 1
is based on a lattice structure where each cell of the grasp
space is identified by an unique numerical code. The samples
are randomly selected, and to assure the completeness of the
method, the samples already chosen are eliminated from the
sampling list for the next step.

IV. COMPUTATION OF THE INDEPENDENT CONTACT AND

NON-GRASPABLE REGIONS

A. Independent contact regions

This subsection summarizes the procedure presented
in [12] to compute the independent contact regions (ICRs) for
a FC grasp. LetFk denote a facet ofCH(W ) that contains at
least one primitive wrench for a particular grasp pointpi. The
proposed approach builds hyperplanesH ′

k parallel to each
facet Fk and containing the originO of the wrench space.
These hyperplanes define the search zoneSi, containing the
wrenches associated with physical points that belong to the
ICRi corresponding topi. Si is the intersection of the open
half-spacesH ′

k

+ that contain the pointpi. ICRi is determined
by the set of neighbor points ofpi such that at least one of
its primitive wrenchesωij falls into Si. The algorithm is:

Algorithm 2: Search of the independent contact regions

Initialize with a FC graspG = {u1, . . . , up}, and compute its
corresponding wrench setW and the convex hullCH(W ).
For each contact pointpi, i = 1, . . . , n, do

1) Build the hyperplanesH ′

k parallel to eachFk and con-
taining the originO

2) Let Si =
⋂

k H ′

k
+ with H ′

k
+ the open half-space such

that ∃ωim ∈ Si

3) Initialize Zi = {pi}. Label the points inZi as open
4) While there are open pointspj ∈ Zi

For every neighboring pointps of pj

If ωs1 ∨ . . . ∨ ωsm ∈ Si

Zi = Zi ∪ {ps}
Label ps as open

Label pj as closed
5) ReturnZi (i.e. the ICRi for the contact pointpi)

Note that the algorithm is computationally very simple.
In Step 1, the hyperplanesH ′

k are computed for the corre-
sponding facetsFk of CH(W ). Let Hk be the hyperplane
containing the facetFk, described asek · x = e0k. The
hyperplaneH ′

k parallel to Hk and containing the origin is
ek · x = 0, i.e. the parametersek of H ′

k are the same as
for Hk. Step 2 only identifies for every hyperplane the open
half-spaceH ′

k

+ that contains at least one of the primitive
wrenches for the pointpi, and forms the search zonesSi.
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Fig. 1. Search of the ICRs for a discretized ellipse: a) Initial FC grasp, b) FC grasp in the wrench space, c) Search of ICR2 for the pointp
2
, d) ICRs

on the ellipse.
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Fig. 2. Search of the non-graspable regions for a discretized ellipse: a) Initial non-FC grasp, b) Non-FC grasp in the wrench space, c) Search of the
NGRs in the wrench space, d) NGRs on the ellipse.

Note that due to the geometrical construction any set of
contact points that allow a wrench within eachSi always
generates a FC grasp. Step 4 is the most complex step in
the algorithm, it requires an iterative check of the primitive
wrenches produced by each new neighboring point, which is
done classifying the wrench with respect to the corresponding
hyperplanesHk. The number of points in eachZi may be
different, depending on factors such as the level of detail in
the representation of the object surface and the smoothness
of the surface, i.e. the rate of change in the normal vector
around the contact location.

Fig. 1 illustrates the search of the ICRs. In order to obtain
3D visualizations, a simple case is presented: the search
of ICRs for the 4-finger frictionless grasp of an ellipse
discretized with 64 points. The initial FC grasp is shown
on the ellipse and in the wrench space (Fig. 1a and 1b);
continuous lines join the neighbor points. The computation
of the ICR for the grasp pointp2 is illustrated in Fig. 1c;
three hyperplanesH ′

k determine the search zoneS2, and the
wrenches corresponding to the neighboring points ofp2 that
fall in S2 are depicted as stars. Fig 1d shows the ICRs for the
4 grasp points; 3920 different FC grasps can be obtained from
the possible combinations of finger positions inside the ICRs.

B. Non-graspable regions

The computation of the non-graspable regions (NGRs)
starts with a non-FC grasp. First, the hyperplanesH ′

k, parallel
to each facetFk and containing the originO of the wrench
space, are built. Then, the subsetT of hyperplanesH ′

k

that completely leaveCH(W ) in the same open half-space

are determined (i.e. if a planeH ′

k intersects withCH(W )
then it does not belong toT ). The hyperplanes inT define
a search zoneST that fully containsCH(W ); ST is the
intersection of the open half-spacesH ′

k
+ that contain all the

primitive wrenches corresponding to the pointpi. The NGRi

is determined by the set of neighboring points ofpi such that
all of its primitive wrenches lie inST . The algorithm is:

Algorithm 3: Search of the non-graspable regions

Initialize with a non-FC graspG = {u1, . . . , up}, and com-
pute its corresponding wrench setW and the convex
hull CH(W ).

1) Build the hyperplanesH ′

k parallel to eachFk and con-
taining the originO

2) Let ST =
⋂

k H ′

k
+ with H ′

k
+ the open half-space such

that CH(W ) ⊂ H ′

k
+ (i.e. ωi1 ∧ . . . ∧ ωim ∈ H ′

k
+ for

eachpi)
3) Initialize Zi = {pi}. Label the points inZi as open
4) For each contact pointpi

While there are open pointspj ∈ Zi

For every neighboring pointps of pj

If ωs1 ∧ . . . ∧ ωsm ∈ ST

Zi = Zi ∪ {ps}
Label ps as open

Label pj as closed
5) Return the setsZi (i.e. the NGRs for each contact

point pi)

Again, the algorithm is computationally very simple. Note
that as O /∈ ST , choosing every possible combination of
one wrench from eachZi always generates aCH(W ) that
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Fig. 3. Search of the non-graspable sets for the previous example: a) HyperplaneH′

1
and NGRHs in the wrench space, b) Sets NGRH|H1 on the ellipse,

c) HyperplaneH′

2
and NGRHs in the wrench space, d) Sets NGRH|H2 on the ellipse.

does not contain the originO of the wrench space, i.e. the
corresponding grasp is non-FC. Fig. 2 illustrates the search of
the NGRs for the 4-finger frictionless grasp of a discretized
ellipse. The non-FC grasp is shown on the ellipse and in the
wrench space (Fig. 2a and 2b). The computation of the NGRs
is illustrated in Fig. 2c; two hyperplanesH ′

k determine the
search zoneST , and the wrenches corresponding to the
neighboring points of eachpi that fall in the search zone
ST are depicted. Fig 2d shows the NGRs for the 4 grasp
points; note that NGR1 = NGR2 and NGR3 = NGR4. 22,500
different non-FC grasps can be obtained from the possible
combinations of finger positions inside the NGRs.

Note that each hyperplaneH ′

k that fulfills the condition
in Step 2 (i.e.CH(W ) ⊂ H ′

k
+) can generate its own

set of NGRs, hereafter called NGRHs. Then, in order to
maximize the number of non-FC grasps identified in each
call to Algorithm 3, for eachH ′

k in T the search region
can be redefined asST = H ′

k

+, and the correspond-
ing NGRHs are directly computed using Steps 3 and 4 in
Algorithm 3. For instance, in the example in Fig. 2 two
hyperplanesH ′

1 andH ′

2 are considered to compute the NGRs.
Fig. 3a and 3c show the two hyperplanes separately and the
corresponding NGRHs|H1 and NGRHs|H2 in the wrench
space, and Fig. 3b and 3d show them on the ellipse. The
NGRHs|H1 and NGRHs|H2 allow 44,100 and 2,313,441
different non-FC grasps, respectively. The equivalence ofthe
NGRs in Fig. 2d with the NGRHs in Fig. 3 is given by
NGRi = NGRHi |H1 ∩ NGRHi |H2.

V. EXAMPLES

To illustrate the proposed approach, the algorithms were
implemented in Matlab on a Pentium IV 3.2 GHz PC. The
following examples show the generation of the grasp space
for 3-finger frictional grasps on two 2D objects. 2D examples
were selected for ease of visualization, as the corresponding
grasp space is three-dimensional and can be graphically
represented.

A. Example 1

The first example uses an ellipse discretized with 64 points
(Fig. 4a). The grasp space contains643 = 262, 144 grasps,
with 12.1% of FC grasps and 87.9% of non-FC grasps, as
shown in Fig. 4b with dark and light colors, respectively.

a) b)

Fig. 4. Example 1: a) Ellipse, b) Grasp space.

The evolution in the generation of the grasp space using
Algorithm 1 is presented in Fig. 5. The grasp space has
symmetries, as anyG = {u1, u2, u3} represents 6 equivalents
grasps (the number of possible permutations of the 3 fingers
on the ellipse while keeping the same 3 contact points);
therefore, each set of ICRs or NGRs corresponds to six axis-
aligned boxes in the grasp space.

Fig. 6 presents the percentage evolution in the coverage
of the total grasp space; the results are the average of
20 different executions of the algorithm. With a low number
of samples, the algorithm rapidly identifies a large portion
of the grasp space, e.g. 82% of the grasp space has been
already explored with just 100 samples, and98% of the grasp
space has been generated with104 samples (3.8% of the total
number of grasps). Fig. 7a presents the number of calls to
Algorithms 2 and 3, i.e. the number of computations of ICRs
and NGRs. Fig. 7b presents the time required to generate the
grasp space.

B. Example 2

In the second example the object is defined by a closed
parametric curve presented in [14] and discretized with 128
points (Fig. 8a). The resulting grasp space is shown in
Fig. 8b; it contains1283 = 2, 097, 152 grasps, with 12.2%
and 87.8% of FC and non-FC grasps, respectively. Fig. 9
shows the evolution in the generation of the grasp space for
different number of samples. Fig. 10 shows the percentage
evolution in the coverage of the total grasp space (average
of 20 trials). As for the previous example, for a low number
of samples a large portion of the grasp space is covered, e.g.
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Fig. 5. Evolution in the generation of the grasp space for Example 1. Up: FC grasp space. Down: non-FC grasp space.
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Fig. 6. Evolution of the grasp space generation for Example 1.

for 10,000 samples (0.48% of the total grasp space) 93.7%
of the space has been generated, in∼ 1000 s.

VI. CONCLUSIONS

This paper has presented an efficient approach to generate
the grasp space, valid for 2D and 3D discrete objects and for
any number of fingers. The grasp space contains a large num-
ber of grasps, therefore, a brute-force exploration of the space
would have a high computational cost. The proposed method
is based on the concepts of independent contact regions
(ICRs) and non-graspable regions (NGRs). The ICRs have
been previously used in some works, but the concept of NGRs
is introduced in this paper. The NGRs are defined as regions
on the object boundary such that when a finger is positioned
inside each of them, a non-FC grasp is always obtained, with
independence of the exact position of each finger.

The proposed approach takes samples of the grasp space,
if a sample is a FC grasp then the ICRs are computed, if it is
a non-FC grasp then the NGRs are computed. Each ICR and
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Fig. 7. Grasp space generation for Example 1: a) Computations of ICRs
and NGRs, b) Computational time.
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Fig. 8. Example 2: a) Discrete object, b) Grasp space.
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Fig. 9. Evolution in the generation of the grasp space for Example 2. Up: FC grasp space. Down: non-FC grasp space.
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Fig. 10. Evolution of the grasp space generation for Example2.

NGR involves a number of additional FC or non-FC grasps,
and therefore with a low number of samples a large portion
of the grasp space is covered. The algorithms presented in the
paper have been implemented and same application examples
are given. The procedures are fully valid for 3D objects with
high-dimensional grasp spaces, however, the application to
3D objects requires an efficient way to save the data (the
grasp space has a high dimensionality, for instance it is
8-dimensional for a 4-finger frictional grasp on a 3D object).
The effect of different sampling methods will be addressed as
future work (e.g. a classical grid search [15] or a deterministic
sampling method [16]).

The generation of the grasp space with the proposed ap-
proach is useful for different manipulation applications,one
of the most relevant is regrasping an object for manipulation
purpose, moving the fingers along the object surfaces while
keeping the force-closure property. This particular application
may not require the total exploration of the grasp space. Work
in this line is currently under development.
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