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Abstract— This paper presents a new approach for the
haptic rendering of compliant motions during the execution
of virtual assembly tasks between simple polyhedral objects.
The method, based on the task configuration space, analyzes
the type of contacts that take place between objects, since
this knowledge allows a better haptic rendering when face-
face or edge-face contacts occur. Making use of spacial and
temporal coherence, the paper presents an efficient procedure
to keep track of the current contacts. This allows to comply to
the hard temporal constraints of the haptic servo loop. The
presented procedures are focused on the haptic rendering
during the interaction between convex polyhedra.

Index Terms— Virtual Assembly, Haptic Rendering, Com-
pliant Motions.

I. INTRODUCTION

Haptic devices are used to interact with virtual worlds
by allowing to feel the reaction forces and torques that
arise when the object attached to the user-manipulated
probe touches the other objects in the virtual environment.
Starting from a configuration of the manipulated object
where there is no interference with the obstacles in the
environment, the haptic rendering loop consists of the
following steps. First the user moves the manipulated object
and the interference with the obstacles is checked. Then, in
case of interference, the penetration distance is computed
and used to estimate the new (contact) position of the
manipulation object and the reaction force and torque.
These steps must be carried out in less than one millisecond
in order to obtain a smooth and stable haptic rendering [1].

Collision detection procedures developed for computer
graphics are usually used [2]–[5], since they allow to
efficiently detect interference between models composed
of thousands of triangles and give information about the
collision points and the penetration distances. When sev-
eral contacts take place simultaneously, the reaction force
and torque is computed in an approximate way by the
interpolation or the sum of the forces computed at each
contact point [6], [7]. Other approaches use an approximate
discretized representation of the manipulated object (e.g.
as a set of points each one with an associated force vector
dependant on its location with respect to the obstacle [8]),
and/or an approximate discretized representation of the
obstacles (e.g. as a set of regular small volumes called
voxels [9]).
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Alternatively, in order to avoid interpenetration and
costly interference detection algorithms, other works pro-
pose constrained and impulse based methods that, based on
separation distances and body velocity/accelelration, com-
pute the forces of eventual contact space constraints [10].

All these procedures are useful when the virtual world
is complex (i.e. constituted by curved objects modelled by
huge triangular meshes), since the kind of contacts that usu-
ally take place when the user moves the manipulated object
are point contacts (i.e. vertex-face contacts). Nevertheless,
when virtual assembly tasks between simple polyhedral
objects are considered, face-face contacts and edge-face
contacts are common and, moreover, compliant motions
are usually performed maintaining these types of contacts.
In these situations, the previous approaches do not provide
a good enough haptic rendering.

To cope with this problem, the kind of contacts that take
place between the manipulated object and the obstacles
in the environment must be considered. This idea is first
introduced by You and Xiao [11]. These authors compute
the reaction forces and torques once the contact situation
has been identified as a collection of principal contacts1.
Contact identification is done by using classical collision
detection algorithms, reasoning procedures and a precom-
puted graph of possible contact situations.

Following this idea of determining the reaction force and
torque from the knowledge of the current type of contact
taking place, we propose a framework based on the task
configuration space (C-space). Fig. 1 shows the proposed
framework, that was first explored in a preliminary ver-
sion [12], providing promising results. The use of C-space
has the following advantages:

• The C-space captures the contact constraints and eases
the contact identification since the manipulated object
collapses to a single point [13].

• The C-space can be used to compute, using gross-
motion planning techniques, a force field to guide
the user in performing the virtual assembly task
(e.g. [14]).

• The visualization of C-space, together with that of
physical space, aids the user in performing the con-
strained motions involved in low-clearance assembly
tasks (e.g. [15] [16]).

1A principal contact is a contact between a pair of topological elements
(vertices, edges or faces) that are not the boundary of other topological
elements in contact.
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Fig. 1. Haptic rendering of an assembly task using C-space.

The obvious disadvantage of using the C-space is the
complexity of its computation. Nevertheless, for haptic
rendering purposes and taking into account the spacial and
temporal coherence, the C-space only needs to be computed
locally (a similar idea in the field of robotic teleoperation
is proposed by Cho et al. [17] for planar tasks). This can be
done by keeping track of the current contacts taking place
or of the nearest potential contacts (if no contact is taking
place). This paper presents an efficient procedure with
that purpose, that allows to comply to the hard temporal
constraints of the haptic servo loop, and is focused on
the haptic rendering during the interaction between convex
polyhedra.

The paper is structured as follows. Section II intro-
duces the C-space and its modelling, which is the base
of the contact tracking procedure presented in Section III.
Then, Section IV introduces the haptic rendering. Finally,
Section V summarizes the contribution of the proposed
approach.

II. CONFIGURATION SPACE

Let A and B be two polyhedra describing the manip-
ulated object and a static object, respectively. Let FA
be reference frame attached to A and FW be the fixed
reference frame of the workspace. Let qA = (xA,ΘA)
be a configuration of A, where xA and ΘA describe,
respectively, the position and the orientation of FA with
respect to FW . Let also qA0 = (xA

0 ,ΘA
0 ) be the current

configuration of A.
The Configuration Space (C-space) of A is the space

defined by all of its configurations. The subset of configura-
tions where there is interference between A and B is called
the C-obstacle COB. The border of COB is composed of
C-faces, each C-face being the subset of configurations of
a five-dimensional hyper-surface f(qA) = 0 where a given
basic contact takes place. There are three types of basic
contacts between A and B:

• Type-A: a face of A against a vertex of B.
• Type-B: a vertex of A against a face of B.
• Type-C: an edge of A against an edge of B.

For each type of basic contact, an applicability condition
can be defined to determine if for a given orientation of A
the contact can take place [18].

For orientation ΘA
0 , the subset of the C-faces correspond-

ing to the basic contacts that satisfy their applicability con-
dition are planar polygons over the corresponding planes
f(xA,ΘA

0 ) = 0. These are the faces of the 3D polyhedron
that represent the C-obstacle for that orientation ΘA

0 .

A. Modelling of C-obstacles

From now on let consider all polyhedra convex (non-
convex polyhedra are previously decomposed into convex
ones). Then, the modelling of the (convex) C-obstacles is
done as follows.

Each C-obstacle COB will be represented as a graph,
GAB , that captures its topology. The nodes of GAB are
all the possible basic contacts between the topological
elements of A and those of B, and its arcs show the
neighboring relationship, as computed in the Appendix.
The neighbor nodes of a node of GAB are called G-
neighbors.

Let the distance from xA
0 to a C-face i be the distance

between xA
0 and the plane that contains the C-face for

the orientation ΘA
0 , i.e. plane fi(xA,ΘA

0 ) = 0. Then,
the subset of nodes of GAB corresponding to the set of
C-faces that are nearest to xA

0 form a subgraph called
near subgraph, GAB

Near. Note that, since A and B are
convex, GAB

Near will contain only one node except for the
orientations where face-face contacts or edge-face contacts
are possible (and in those cases the C-faces of the nodes
of GAB

Near are coplanar). The distance from xA
0 to the

node(s) of GAB
Near is called DNear. The nodes of GAB

Near

and their G-neighbors form a subgraph called neighbor
subgraph, GAB

Neigh.
Due to the spatial and temporal coherence, i.e. due to the

fact that the C-space changes very slightly around qA0 for
a motion of A between two consecutive instants of time,
only those nodes of GAB

Neigh that are nearest to qA0 and that
satisfy the applicability condition are to be considered. This
subset is called local applicability subgraph, GAB

L,Θ0
.

When the orientation of A changes, GAB
L,Θ0

may change
since some basic contacts may no longer be possible
(i.e. their applicability condition may no longer hold) and
others may become possible. Moreover, if the position
of A changes, GAB

L,Θ0
may change since the nearest basic

contact(s) may change. The update of GAB
L,Θ0

is tackled in
Section III, as well as the collision detection test, which is
applied to the nodes of GAB

L,Θ0
.

III. CONTACT TRACKING / COLLISION DETECTION

Each time the configuration of A changes from qA0 to
a new configuration qAnew= (xA

new,ΘA
new), the following

steps are executed for each COB in order to recompute the
corresponding subgraph GAB

L,Θ0
, and perform the collision

detection test:
1) Compute the distances di (for orientation ΘA

new) from
xA

new to the supporting planes of the nodes of GAB
Neigh,
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Fig. 2. Snapshots of a motion of the manipulated object both in physical space (top) and C-space (bottom). The C-faces of GAB
Near are highlighted.

i.e. di = fi(xA
new,ΘA

new). Since the C-obstacles are
convex, the nearest C-face is the one that has the
greater value of di [19].

2) Set GAB
L,Θ0

with all the nodes of GAB
Neigh whose

distance di satisfies |DNear−di| < δ and that satisfy
the applicability condition (within some tolerance
values). This step is performed to prune all the nodes
of GAB

Neigh whose C-faces are, due to the spatial and
temporal coherence assumed, too far from xA

0 to
become the new nearest C-face. The value of δ is
small and related to |xA

new − xA
0 |.

3) Order the nodes of GAB
L,Θ0

in decreasing order of di.
Set GAB

Near with the first node and update DNear with
its corresponding distance value. Add also to GAB

Near

any node whose distance di satisfies |DNear−di| < ε
with ε fixed to allow some tolerance in the handling
of face-face and face-edge contact situations.

4) A collision is taking place if Dnear ≤ 0, i.e. when
all the distances are negative.

5) Update GAB
Neigh with the G-neighbors of GAB

Near.
6) Update qA0 with the value of qAnew.

As an example, Fig. 2 shows four snapshots of a motion
of the manipulated object both in physical space and
C-space. The program highlights the C-face(s) of GAB

Near

as the user manipulates the object. It can be seen how it
changes following the sequence 44 → 124 → 27 → 114.
The graph GAB of this simple assembly task is composed
of 128 nodes (A is composed of 4 faces, 4 vertices
and 6 edges and B is composed of 6 faces, 8 vertices
and 12 edges). The graph GAB

Neigh ranges from 17 to 72
nodes depending on the number and type of contacts. The
graph GAB

L,Θ0
is composed of less than 5 nodes when GAB

Near

has a single node (corresponding to a face-vertex or an

edge-edge contact situation); and is composed of less than
10 nodes when GAB

Near has up to four nodes (corresponding
to a face-face contact situation).

IV. HAPTIC RENDERING

A. Single basic contacts

The situation where the manipulated object A is inter-
fering with an obstacle B is represented in C-space by
qA0 being inside COB. This situation, as commented in
the previous section, is detected by verifying that all the
distances from xA

0 to the planes of the C-faces of the nodes
of GAB

L,Θ0
are negative. If GAB

Near contains only one C-face,
a single basic contact is taking place. The reaction force
and torque is then computed as follows. Let:

• The HIP , or haptic interface point, be xA
0 .

• ΠNear be the the plane in C-space that contains the
C-face of GAB

Near.
• The SCP , or surface contact point, be the point over

ΠNear which is nearest to the HIP when the HIP
is inside COB.

• �nNear be the outward normal to ΠNear.
• depth be the (unsigned) distance from the HIP to

ΠNear.
The HIP is changed by the user as he moves the

probe attached to the manipulated object. When there
is no contact, the SCP is set coincident to the HIP ,
otherwise when the HIP is inside a C-obstacle, the SCP
is computed as:

SCP = HIP + �nNear · depth (1)

Then, the reaction force is computed proportional to the
distance between the HIP and the SCP :

�F = (SCP − HIP )kF (2)
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Fig. 3. Reaction force and torque at an edge-face contact.

where kF represents the elasticity of the objects involved
in the contact.

For the computation of the reaction torque, the contact
point, App, where the force is applied must be computed.
For a single basic contact, it coincides with the contact
vertex (for type-A or type-B basic contacts) or with the
point where edges cross (for type-C basic contacts). Then,
the reaction torque is computed as:

�τ = �F × (xA
0 − App) (3)

Note that, since �F and �τ are the reaction force and torque
to be fed back to the user, they are computed with respect
to the orientation of the fixed reference frame FW .

B. Multiple contacts between two convex polyhedra

Let consider now the face-face and edge-face contact
situations where a set of K basic contacts between two
convex polyhedra take place simultaneously. For any ori-
entation where these contacts situations occur, the C-faces
of the involved K basic contacts are coplanar. Let:

• The contact plane Πcontact be the plane in physical
space that contains the contact faces.

• The application point Appk be the contact point
corresponding to basic contact k ∈ 1 . . . K.

• The contact region H be the convex hull of the appli-
cation points. It is a segment for edge-face contacts
and a convex polygon with K vertices for face-face
contacts.

• The contact reference point π(xA
0 ) be the orthogonal

projection of xA
0 onto Πcontact.

• The contact reference frame FC be the orthogonal
reference frame associated to a given multi-contact
situation C. The origin of FC coincides with xA

0 and
its orientation is such that the z-axis is normal to
Πcontact, the x-axis is parallel to the contact edge (for
edge-face contacts) or parallel to the nearest edge of H
(for face-face contacts), and the y-axis is orthogonal

to the xz-plane and its sense is such that it makes FC

right-handed.
• The rotation matrix R be the matrix that relates the

orientation of FC with that of FW .
The reaction force �F is computed as in the single contact

case, since all the C-faces involved in the multi-contact
situation are coplanar. The reaction torque �τ is computed
as:

�τ = R�τC (4)

where �τC is the torque at FC computed as follows. Let
the x,y and z components of �τC be, respectively, τx

C , τy
C

and τz
C .

Then, for edge-face contacts:
• τz

C = 0 since the reaction force is (by construction of
FC) in the direction of the z-axis.

• τx
C and τy

C are computed as follows. Let τx
C,k and

τy
C,k be, respectively, the x and y components of

the individual torques produced by the applied force
acting at point Appk k ∈ 1 . . . K, and computed as in
the single contact case using (3). Then:

τy
C =

{
0 if sign(τy

C,k) �= sign(τy
C,j) k, j ∈ 1 . . . K

1
K

∑K
k=1 τy

C,k otherwise
(5)

τx
C=

1
K

K∑
k=1

τx
C,k (6)

And for face-face contacts:
• τz

C = 0 since the reaction force is also, by construc-
tion, in the direction of the z-axis.

• τx
C = 0 and τy

C = 0 if π(xA
0 ) ∈ H; otherwise, they are

computed as in the edge-face case using (5) and (6).
Fig. 3 shows an example where the multi-contact situ-

ation C is an edge-face contact between the manipulated
object A and an obstacle B. This is a two-contact situation
composed of a type-B basic contact (point App1) and a
type-C basic contact (point App2). The x-axis of FC is
parallel to the contact edge and the z-axis is normal to
the contact face. For the configuration shown in the figure,
there is a positive torque around the x-axis of FC and a
null torque around the y-axis, since τy

C,1 < 0 and τy
C,2 > 0.

Fig. 4 (left) shows an example where the multi-contact
situation C is a face-face contact between the manipulated
object A and an obstacle B. This is a multi-contact situation
composed of two type-C basic contacts (points App2 and
App4) a type-A basic contact (point App1) and a type-
B basic contact (point App3). Since π(xA

0 ) is next to the
edge of H between points App1 and App2, this edge
determines the direction of the x-axis of FC . In this
example π(xA

0 )�∈ H and therefore the torque is non-null in
the x-direction (and is null in the y-direction since τy

C,2 > 0
and τy

C,4 < 0). In Fig. 4 (right), on the contrary, π(xA
0 ) lies

inside H and the torque is zero.
Fig. 5 show the reaction forces and torques obtained

from the contacts of Fig. 4 (left) when they are consec-
utively attained starting from a no-contact situation. The
computation times (including the contact tracking) always
ranged from 0.1 to 0.6 ms.
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V. SUMMARY

This paper copes with the problem of the haptic render-
ing of compliant motions performed during the execution of
virtual assembly tasks. These tasks are normally performed
between simple polyhedral objects, and compliant motions
maintaining face-face contacts and face-edge contacts are
usual. In order to obtain a smooth haptic rendering in these
situations, the information of the current type of contact
taking place is necessary. Taking into account this need,
this paper introduces an approach based on the C-space.
Using spatial an temporal coherence, a procedure to keep
track of the (possible) contacts is presented that allows to
consider the C-space locally.

The developed procedures have been implemented in
C++ on a PC computer. The interface has been devel-
oped using Qt and OpenInventor. Several simple assembly
tasks have been considered. Fig. 6 shows a peg-into-hole
assembly task (the hole has been previously decomposed
into five convex polyhedra). A 6 d.o.f. Phantom haptic
device has been used for the experiments (Fig. 7). First
results show good performance in comparison to standard
haptic rendering methods. Efforts are now directed towards
improving the control algorithm by considering a control
law based on virtual passive coupling [20], and towards
considering the contacts between several objects.

APPENDIX

This appendix explains how the neighboring relationship
of the nodes of the graph GAB that captures the topology
of a C-obstacle is obtained. Let F , E and V represent,
respectively, a face, an edge and a vertex of a polyhedron,
and let the following neighborhood operators be defined
as:

• Nv(F ): gives the vertices of face F .
• Ne(F ): gives the edges of face F .
• Nf (F ): gives the faces that contain an edge of Ne(F ),

excluding F .
• Nf (V ): gives the faces that contain vertex V .
• Ne(V ): gives the edges that contain vertex V .
• Nv(V ): gives the vertices of the edges of Ne(V ),

excluding V .
• Ne(E): gives the edges that share a vertex with edge

E.
Then, the procedure to compute the arcs of GAB has the

following steps:
1) Connect each type-A basic contact (FA, VB)

with type-A basic contacts (Nf (FA), VB)
and (FA, Nv(VB)), with type-B basic contacts
(Nv(FA), Nf (VB)), and with type-C basic contacts
(Ne(FA), Ne(VB)).

2) Connect each type-B basic contact (VA, FB)
with type-B basic contacts (Nv(VA), FB) and
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Fig. 6. Interaction between objects during a virtual assembly task,
represented both in C-space and in physical space.

 

Fig. 7. Haptic interaction using the 6 d.o.f. Phantom haptic device.

(VA, Nf (FB)), and with type-C basic contacts
(Ne(VA), Ne(FB)).

3) Connect each type-C basic contact (EA, EB)
with type-C basic contacts (EA, Ne(EB)) and
(Ne(EA), EB).

As an example Fig. 8 shows some of the G-neighbors of
a type-B basic contact.
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