
HG-RRT∗: Human-Guided Optimal Random Trees
for Motion Planning
Néstor Garcı́a, Raúl Suárez and Jan Rosell

Abstract—The paper deals with the problem of designing an
RRT∗-based planning algorithm that allows the user to guide the
tree growth in a simple and transparent way. The key idea of
the proposal is to create a planning algorithm, called HG-RRT∗,
that minimizes an optimization function over the configuration
space where a state cost function is established. This state cost
is defined as the combination of several potential fields. Each of
these potential fields will attract the solution path or move it away
from certain areas. The planning algorithm will try to minimize
the path length, the motion effort and the variations of the cost
along the path. The paper presents a description of the proposed
approach as well as simulation results from a conceptual and an
application example, including a thorough comparison with the
TRRT planning algorithm.

I. INTRODUCTION

A. Previous Works

Some of the best approaches to motion planning for robotic
systems with high number of degrees of freedom are those
based on optimization techniques and those based on sampling.
Optimization approaches, like CHOMP [1] or TrajOpt [2],
incorporate collision avoidance into trajectory optimization,
i.e. an optimization method starts from a trajectory (or sev-
eral [3]) that contains collisions and perhaps violates con-
straints and tries to converge to a high-quality trajectory satis-
fying constraints. The differences between these optimization
approaches lie in the numerical optimization method used and
in the method of checking for collisions and penalizing them.
Sampling-based approaches, like RRT [4] or KPIECE [5], on
the other hand, put the emphasis in the exploration of the free
configuration space in order to capture its connectivity relevant
to the query to be solved. To improve efficiency, different ways
to bias the sampling have been proposed, like the one based
on features present in the underlying workspace [6]. Also, in
order to seek for optimal solutions some variants have been
proposed, like RRT∗ [7] or TRRT [8].

The basic idea of RRTs is to build a tree of feasible motions,
rooted at the initial configuration, by iteratively sampling the
configuration space to get a random configuration (qrand),
searching the node of the tree nearest to it (qnear), and moving a
small amount from qnear, towards qrand. If the generated motion

The authors are with the Institute of Industrial and Control Engineer-
ing (IOC), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain,
raul.suarez@upc.edu. This work was partially supported by the Spanish
Government through the projects DPI2011-22471, DPI2013-40882-P and
DPI2014-57757-R.

is collision-free then the reached configuration (qnew) is added
as a node of the tree and the path connecting qnear and qnew
as an edge. RRT∗, on the other hand, proceeds as follows.
Once qnew has been computed as in the RRT case, it is not
directly connected to qnear but to the node (among a given set
of neighbors) that minimizes the cost to reach qnew according
to a given cost function. Afterwards, RRT∗ checks whether
each neighbor node can be reached, through qnew, with a cost
smaller than its current one and, if so, rewires the edges of
the tree. Thanks to this rewiring process the solution keeps
improving while the number of samples increases. RRT∗ has
usually been used to optimize the path length or the path clear-
ance, although other alternative costs have been proposed [9],
[10]. In order to improve efficiency, the combination of RRT∗

and potential fields has been recently proposed [11]. In this
approach, the position of qrand is modified by moving it a small
amount in the direction defined by the gradient of a potential
function, directing it away from obstacles and towards the
goal. Similar combinations of sampling-based approaches and
potential fields were explored in the past, e.g. [12] and [13]. A
potential field codifying a given cost-map is also used with an
optimization perspective in the TRRT approach. This method
computes low-cost paths over a configuration-space cost-map
by combining an RRT with an stochastic optimization method
that modulates the tree growth by accepting or rejecting new
potential nodes (mechanical work is used as optimization
criterion, i.e. only positive variations of the cost function along
the path are considered to compute the cost of the path).
Following this approach, the Environment-Guided RRT (EG-
RRT [14]) exploits the cost-guided exploration of TRRTs to
minimize the probability of collisions when uncertainty in
control and sensing is present.

B. Problem Statement and Solution Overview

The aim of this work is to develop a sampling-based
planning algorithm that allows the user to easily guide the
path towards some preferred regions while avoiding some
others. The proposal uses an RRT∗ with an optimization cost
function based on a combination of several potential fields that
modulate the tree growth. Repulsive potential fields are set to
define regions to be avoided, whilst attractive potential fields
are set to define the preferred ones. The potential fields are
generated by points or segments specified by the user in the
workspace. The sampling-based nature of the RRT∗ planning
algorithm allows to easily find collision-free path in cluttered978-1-4673-7929-8/15/$31.00 c⃝ 2015 IEEE

environments for robots with many degrees of freedom, while
its optimization nature is exploited to guide the path by using
the user-defined cost function. The minimization of this cost
function steers the robot to safe areas while it is moved away
from the obstacles and unsafe areas. The cost function is
defined so that the planning algorithm takes into account the
path length, the average value and the variations of the cost
along the path.

II. THE HG-RRT∗ PLANNING ALGORITHM

A. Cost Function

RRT∗-based planners use an optimization cost function to
evaluate and compare different paths. In RRTs, the initial
and the goal configurations are connected by piece-wise paths
composed of a set of edges, called motions. When there are
only geometric constraints, the paths can be piece-wise linear
and the motions straight-line segments. Each configuration of
the robotic system is considered as a different state for the
planning algorithm.

The state cost used in this work is defined as the combi-
nation of potentials surfaces. Each potential can be repulsive
or attractive, and it is created by a point or a segment in the
workspace (although it can easily be extended to a free-form
surface). The cost of a state s is computed as:

c (s) =
∑
i

max (−λi, 0) + λie
−αidi(s)

2

∈ (0,
∑

i |λi|] (1)

with λi ∈ R, αi > 0 and di (s) being the distance in the
workspace between the reference point of the robot at the state
s and the i-th point or segment that generates the potential
field. λi is the magnitude parameter that defines how repulsive
or attractive the i-th element is. Note that for λi > 0 the
i-th element is repulsive and for λi < 0 it is attractive.
Nevertheless, c (s) is strictly positive. αi is the diffusion
parameter and determines how concentrated the potential of
the i-th element is.

Let ss and sg be, respectively, the start and the goal states,
s1 and s2 be two arbitrary states and d (s1, s2) the Euclidean
distance in the state space between them. Then, the cost of
the rectilinear motion connecting the two states s1 and s2 is
defined as the linear combination of three costs:

c (s1, s2) =
kP cP(s1, s2)+kI cI(s1, s2)+kD cD(s1, s2)

kP + kI + kD
(2)

where

cP (s1, s2) = d (ss, sg)
−1
∫ s2

s1

ds =
d (s1, s2)

d (ss, sg)
(3)

cI (s1, s2) =

(
c (ss)+c (sg)

2
d (ss, sg)

)−1∫ s2

s1

c (s) ds (4)

cD (s1, s2) = |c (sg)−c (ss)|−1
∫ s2

s1

∣∣∣∣d c (s)
ds

∣∣∣∣ ds (5)

with kP, kI, kD ≥ 0 and kP + kI + kD > 0.
The motion cost presented in this work represents the

path integral of a state cost function defined over the state

space. cP(s1, s2) measures the length of the motion, cI(s1, s2)
measures the motion effort, computed as the product of the
state cost average and the motion length, and cD(s1, s2)
measures the variations of the state cost function along the
path. Note that c (ss)+c (sg) ̸= 0 and |c (sg)−c (ss)| ̸= 0 is
required to have bounded values of the costs. The former is
satisfied by definition and the latter is easily accomplished by
always setting sg as an attractive point.

The planning objective is the minimization of the total cost
c (P) of a path P defined in the HG-RRT∗ by a sequence of n
consecutive states si connected by rectilinear motions. c (P)
is computed as:

c (P) =
n−1∑
i=1

c (si, si+1) (6)

Another optimization objective, given a state cost, is pro-
posed by the TRRT algorithm [8] that we will use later
for comparison purposes. It uses the mechanical work as
optimization criterion, wich is computed as follows,

MW (P) =

∫
P

[
max

(
d c (s)

d s
, 0

)
+ ϵ

]
ds (7)

where ϵ is assumed to be a very small value compared to the
state costs and it favors shortest paths of equal mechanical
work. This optimization objective takes only into account
the positive variations of the state cost function along the
path. However, the mechanical work is asymmetric (unlike
the optimization objective presented here). The use of the
mechanical work as an optimization criterion in the RRT∗

leads to motion cost recomputation when some rewiring of
the tree is needed and so the performance may be degraded.

B. The algorithm

The proposed planning procedure is described in Algo-
rithm 1, where the following functions are used:

• Sample(C, qgoal, Pgoal): Returns a random configuration
of the configuration space C with probability 1 − Pgoal,
and returns qgoal with probability Pgoal.

• k-Near(V, q): Returns the k nearest neighbors of q from
the set V of tree nodes (the value of k depends on the
dimension of the configuration space and on the number
of tree vertices [7]).

• Path(q): Returns a piece-wise rectilinear path, composed
of tree edges, that connects the root node qinit to node q.
The path is computed by backtracking from q following
the parent relationship in the tree.

• CollisionFree(q1, q2): Returns true if the rectilinear edge
in C connecting q1 and q2 is collision-free, and false
otherwise.

• Nearest(q): Returns the closest node to configuration q
from the tree nodes.

• Cost(q): Returns the state cost of the configuration q
using Eq. (2).

• EdgeCost(q1, q2): Returns the cost of the rectilinear
motion from q1 to q2 using Eq. (6).

Algorithm 1 HG-RRT∗

Input: Configurations qinit, qgoal ∈ C
Probability Pgoal

Advance step ϵ
Output: A path from qinit to qgoal

1: V ← {qinit};E ← ∅;
2: for i← 0 to n do
3: qrand ← Sample(C, qgoal, Pgoal)
4: qnearest ← Nearest(qrand)
5: qnew ← Steer(qnearest, qrand, ϵ)
6: if CollisionFree(qnearest, qnew) then
7: Qnear ← k-Near(V, qnew)
8: V ← V ∪ {qnew}
9: qmin ← qnearest

10: cmin ← Cost(qnearest) + EdgeCost(qnearest, qnew,w,U)
11: for all q ∈ Qnear do
12: if CollisionFree(q, qnew) ∧

Cost(q) + EdgeCost(q, qnew,w,U) < cmin then
13: qmin ← q
14: cmin ← Cost(q) + EdgeCost(q, qnew,w,U)
15: end if
16: end for
17: E ← E ∪ {qmin, qnew} //Connect along a minimum-cost path
18: for all q ∈ Qnear do
19: if CollisionFree(qnew, q) ∧

Cost(qnew) + EdgeCost(qnew, q,w,U)< Cost(q) then
20: E ← (E\{Parent(q), q}) ∪ {qnew, q} //Rewire
21: end if
22: end for
23: if qnew = qgoal then
24: return Path(qgoal)
25: end if
26: end if
27: end for
28: return ∅

It should be remarked that the HG-RRT∗ algorithm is based
on the RRT∗ algorithm but the optimization cost function
has been modified (using Eq. (2) and Eq. (6)). Instead of
minimizing only the path length, the new optimization cost
function allows to minimize the path length, the motion effort
and the variations of the state cost function along the path.

III. APPROACH VALIDATION

A. Implementation issues

The proposal has been implemented within The Kautham
Project [15], a motion planning and simulation environment
developed at the Institute of Industrial and Control Engineering
(IOC-UPC) for teaching and research. The core of the plan-
ners provided belong to the Open Motion Planning Library
(OMPL) [16], which codes a wide set of the state-of-the-
art sampling-based motion planning algorithms at an abstract
level, i.e. without including issues related to robot modelling,
collision-check or visualization.

The cost function proposed has been coded as a class
derived from the OMPL OptimizationObjective class and the
planning algorithm as a derived class from the OMPL RRT∗

class.

Fig. 1. Conceptual example. A 2-dof mobile robot must go from the start
configuration qs to the goal configuration qg in a collision-free scenario (left).
qg has an attractive potential field and the points and segments red painted
have a repulsive one (right).

Fig. 2. Path cost c(P) and its components (cP(P), cI(P) and cD(P)) as a
function of the planning time (in seconds) resulting from the average of 10
executions when solving the conceptual example with the HG-RRT∗ algorithm
and (kP, kI, kD) = (1, 1, 1).

B. Conceptual Example

The proposed planning procedure was used to plan the
motions on a 2D scenario (see Fig. 1). It consists of an
obstacle-free workspace with the start configuration qs at
the bottom-left corner and the goal configuration qg at the
top-right corner. A potential field is established by setting
several repulsive points and segments. Moreover, the limits
of the workspace and the goal configuration act, respectively,
as repulsive walls and as an attractive point.

Fig. 2 shows how the path cost c (P) decreases as the
HG-RRT∗ runs for more time until reaching a stable value.
It can be seen that after 20 seconds the cost has already
converged to its final value. In Fig. 3 (top) several solution
paths obtained with a different planning time are shown. In
Fig. 3 (bottom) the evolution of the state cost along the path for
different planning time limits is shown. Note that cost peaks
are decreased as the planning time increases. Nevertheless,
the length of the solution path is not extremely increased. The
query is solved for 20 seconds and the solution found is shown
in Fig. 4. The path obtained minimizes the combination of the
three costs cP(P), cI(P) and cD(P), avoiding large variations
of the cost along the path by trying to go directly to the goal
configuration without climbing any mountain.

To illustrate the proposed approach, the resulting solution
path when only one component of the motion cost is mini-
mized is also shown:

Fig. 3. Paths obtained after solving the conceptual example with the
HG-RRT∗ algorithm for (kP, kI, kD) = (1, 1, 1) and with different limits
of planning time (top) and state cost evolution along the path for the different
cases (bottom).

Fig. 4. Tree and solution path obtained after solving the conceptual example
with the HG-RRT∗ algorithm for 20 seconds with (kP, kI, kD) = (1, 1, 1).

• Fig. 5 shows the path that minimizes cP(P). Since the
distance is being minimized the solution is the rectilinear
motion connecting qs and qg no matter the mountains
that are climbed along the path. It can be seen that the
tree edges are radial motions starting at qs.

• Fig. 6 shows the path that minimizes cI(P). In this case
only the narrow mountains are climbed instead of being
surrounded because it would imply more effort. Only the
wide mountains are surrounded.

• Fig. 7 shows the path that minimizes cD(P). Note that
the number of ascents and descents is reduced and the
tree edges try to follow the contour lines. In this case no
mountain is climbed even if this means a longer path.

Fig. 8 shows the evolution of the state cost along the path
obtained with different values of kP, kI, and kD. Note that the
path minimizing cP(P) has the shortest length but the higher
cost peaks, the path minimizing cI(P) has lower peaks but it
is a little bit longer, the path minimizing cD(P) has the lowest
peaks but it is also the longest, and the path minimizing c(P)
presents a balanced solution as a combination of the other

Fig. 5. Tree and solution path obtained after solving the conceptual example
with the HG-RRT∗ algorithm for 20 seconds with (kP, kI, kD) = (1, 0, 0).

Fig. 6. Tree and solution path obtained after solving the conceptual example
with the HG-RRT∗ algorithm for 20 seconds with (kP, kI, kD) = (0, 1, 0).

three.
Table I shows the average results obtained after 100 exe-

cutions for this example using the HG-RRT∗ algorithm and
the standard TRRT when running in a 2.13-GHz Intel Core 2,
4-GB RAM PC. The conceptual example has been solved with
the HG-RRT∗ (for (kP, kI, kD) = (1, 1, 1)) and the TRRT
algorithms. As stated above, while the HG-RRT∗ algorithm
uses the optimization function presented in this work, the
TRRT algorithm minimizes the mechanical work of the path.
A limit of 20 seconds was imposed to the executions. If the
planner cannot find a solution with this constraint the planner
run is considered as a failure. The table includes: the success
rate, the time needed to find a solution, the solution path
length, the number of tree nodes, the cost of the solution path
calculated with the mechanical work criterion (cost MW), the
cost of the solution path calculated with the method proposed
in this work (cost PID), the average state cost value along the
path and the maximum state cost value along the path.

From the experimental results it can be stated that the

TABLE I
AVERAGE RESULTS OF THE MOTION PLANNING FOR 100 EXECUTIONS.

planner HG-RRT∗ TRRT
success rate (%) 100 100
used time (s) 20 0.774
solution length (m) 133.074 188.785
tree nodes 8866.089 658.358
path cost MW 0.348 0.594
path cost PID 1.749 2.411
c̄ 0.594 0.801
cmax 0.911 0.918

Fig. 7. Tree and solution path obtained after solving the conceptual example
with the HG-RRT∗ algorithm for 20 seconds with (kP, kI, kD) = (0, 0, 1).

Fig. 8. State cost as a function of the resulting path length with different
values of kP, kI, and kD when solving the conceptual example with the
HG-RRT∗ algorithm.

HG-RRT∗ algorithm produces shorter paths and better results
despite whether the path cost is computed with the mechanical
work method or with the one presented in this paper. It can
also be seen that the average state cost along the path is lower
in the case of the HG-RRT∗. The case using TRRT planner
has a lower planning time since the HG-RRT∗ planner never
terminates and it keeps trying to find a more optimal solution
within the allowed time.

Fig. 9 shows a path obtained when solving the example
with the TRRT and using the mechanical work optimization
function (Eq. 7). The shown path has a cost similar to the
obtained average value of 100 executions. It can be seen that
the whole configuration space has not been explored due to
the TRRT tree growth modulation. No mountain is climbed
but as shown in Table I with the HG-RRT∗ paths with lower
mechanical work can be obtained.

The proposed approach and TRRT executions have a huge
difference in terms of timing and so the direct comparison of
the HG-RRT∗ planner against TRRT is not fair. Unlike the
RRT∗, the TRRT cannot be forced to run for a fixed amount
of time. Nevertheless, the TRRT transition test can be tuned to
be more strict and then obtain better solution paths, at a cost of
increasing the planning time. Hence, by tunning the transition
test, the TRRT planning time can be increased. In this way, the
same conceptual example was solved again but with different
values of the transition test parameters. Fig. 10 shows the
cost of the solution path obtained for the two planners with
different planning times. Although TRRT is able to find a
solution with less than one second, HG-RRT∗ quickly obtains

Fig. 9. Tree and solution path obtained after solving the conceptual example
with the TRRT algorithm.

Fig. 10. Path cost c(P), computed with the mechanical work (top) and the
PID (bottom) methods, as a function of the planning time resulting from
the average of 100 executions when solving the conceptual example with the
TRRT and the HG-RRT∗ algorithms, the latter with (kP, kI, kD) = (1, 1, 1).

better results for the same used time no matter whether the
cost was measured with the mechanical work criterion or with
that proposed in this paper.

C. Application Example

The proposed planning procedure was used to plan the
motions of a quadrotor while it performs aerial inspection of
the chimneys of a power plant (see Fig. 11). The quadrotor
has been modelled as a sphere for collision checking and its
dynamics has not been taken into account. Then, if necessary,
dynamics of the quadrotor, supposed differentially flat, can be
considered by selecting waypoints from the optimal path and
jointly optimizing a set of polynomials through them to obtain
a minimum-snap path, like in [17].

The state cost function has been constructed making each
chimney repulsive with a different diffusive coefficient αi

depending on the chimney radius. A set of horizontal attractive

Fig. 11. Application example. A quadrotor has to do an aerial inspection of
the chimneys of a power plant. The start configuration qs has been set at
ground level and the goal configuration qg has an attractive potential. The
chimneys act as repulsive segments while the lines magenta painted reprent
attractive lines that steer the path. The figure shows the HG-RRT∗ solution
path after 100 seconds of motion planning with (kP, kI, kD) = (1, 1, 1).

Fig. 12. State cost function of the application example computed at different
heights (darker colors represent lower state cost values).

lines has been added to the scenario to steer the solution path.
As done with the conceptual example, the goal configuration
acts as an attractive point. Fig. 12 shows the potential surfaces
for different heights where darker colors represent lower state
cost values. The start configuration is at ground level (z = 0m)
while the goal configuration is at a height of z = 15m.

Fig. 13 shows how the path cost c (P) keeps decreasing as
the query is solved for more time. It is considered that only
after 100 seconds of motion planning the cost has converged
to its final value. Then, the solution path obtained after this
time is shown in Fig. 11. It can be seen that the path tries

Fig. 13. Path cost c(P) and its components (cP(P), cI(P) and cD(P))
as a function of the planning time (in seconds) resulting from the average
of 10 executions when solving the application example with the HG-RRT∗

algorithm and (kP, kI, kD) = (1, 1, 1).

TABLE II
AVERAGE RESULTS OF THE MOTION PLANNING FOR 100 EXECUTIONS.

planner HG-RRT∗ TRRT
success rate (%) 100 100
used time (s) 100 6.562
solution length (m) 37.472 59.037
tree nodes 8759.201 6597.298
path cost MW 0.000397 0.00283
path cost PID 0.923 4.061
c̄ 0.333 0.607
cmax 0.696 1.024

to follow the guiding lines as long as it does not increase too
much the path length. In addition, the solution obtained avoids
getting close to the chimneys.

Table II shows the average results obtained after 100 execu-
tions for the quadrotor example using the HG-RRT∗ algorithm
and the standard TRRT. In this case the time limit has been
set to 100 seconds.

It can be noted that using the HG-RRT∗ algorithm we get
shorter solutions and with a lower average state cost value
than with the TRRT planner. HG-RRT∗ executions have the
lowest path cost values (with the mechanical work criterion
and also with our method). They have more tree nodes since
the HG-RRT∗ planner consumes all the available planning
time.

As it was done previously, the same example has been run
with different parameter values of the TRRT transition test to
get executions that require different planning times. Fig. 14
shows the obtained results. It can be seen that, again, the
HG-RRT∗ obtains solution paths with lower cost. Note that
the TRRT path cost has not converged to a constant value for
the maximum planning time considered.

IV. CONCLUSIONS

This paper has proposed original work dealing with the
design of a planning algorithm that, in a simple way, lets the
user to guide the motion planning towards some desirable areas
while the tree growth is moved away from some preferably
avoidable zones of the configuration space. A state cost

Fig. 14. Path cost c(P), computed with the mechanical work (top) and
the PID (bottom) methods, as a function of the planning time (in seconds)
resulting from the average of 100 executions when solving the application
example with the TRRT and the HG-RRT∗ algorithms and (kP, kI, kD) =
(1, 1, 1).

function has been defined over the configuration space as the
combination of several potential fields. The user can create as
many potential fields, repulsive or attractive, as he wants. A
RRT∗-based planner, called HG-RRT∗, has been developed.
This planner algorithm minimizes the path length, the average
state cost along the path and the variations of the state cost
function along the path. The proposed approach has been
implemented and a conceptual and an application example
were presented to illustrate the proposed ideas. It has been
also compared with the TRRT planning algorithm, showing
better results.

REFERENCES

[1] N. Ratliff, M. Zucker, J. Bagnell, and S. Srinivasa, “CHOMP: Gradient
optimization techniques for efficient motion planning,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation, 2009, pp. 489–494.

[2] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” The International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, August
2014.

[3] J. Pan, Z. Chen, and P. Abbeel, “Predicting initialization effectiveness
for trajectory optimization,” in Proc. of the IEEE Int. Conf. on Robotics
and Automation, 2014, pp. 5183–5190.

[4] J. J. Kuffner and S. M. LaValle, “RRT-Connect: An efficient approach to
single-query path planning,” in Proc. of the IEEE Int. Conf. on Robotics
and Automation, 2000, pp. 995–1001.

[5] I. Sucan and L. Kavraki, “A sampling-based tree planner for systems
with complex dynamics,” IEEE Trans. on Robotics, vol. 28, no. 1, pp.
116–131, 2012.

[6] M. Zucker, J. Kuffner, and J. Bagnell, “Adaptive workspace biasing for
sampling-based planners,” in Proc. of the IEEE Int. Conf. on Robotics
and Automation, 2008, pp. 3757–3762.

[7] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, June 2011.

[8] L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning on
configuration-space costmaps,” Robotics, IEEE Transactions on, vol. 26,
no. 4, pp. 635–646, Aug 2010.

[9] J. Rosell and R. Suárez, “cRRT*: Planning loosely-coupled motions
for multiple mobile robots,” in 19th IEEE International Conference on
Emerging Technologies and Factory Automation, ETFA, 2014.

[10] J. Rosell and R. Suarez, “Using hand synergies as an optimality criterion
for planning human-like motions for mechanical hands,” in Humanoid
Robots (Humanoids), 2014 14th IEEE-RAS International Conference on,
Nov 2014, pp. 232–237.

[11] A. Qureshi, K. Iqbal, S. Qamar, F. Islam, Y. Ayaz, and N. Muhammad,
“Potential guided directional-RRT* for accelerated motion planning in
cluttered environments,” in Mechatronics and Automation (ICMA), 2013
IEEE International Conference on, Aug 2013, pp. 519–524.

[12] D. Aarno, D. Kragic, and H. Christensen, “Artificial potential biased
probabilistic roadmap method,” in Robotics and Automation, 2004.
Proceedings. ICRA ’04. 2004 IEEE International Conference on, vol. 1,
April 2004, pp. 461–466 Vol.1.

[13] J. Rosell and P. Iñiguez, “Path planning using harmonic functions and
probabilistic cell decomposition,” in Robotics and Automation, 2005.
ICRA 2005. Proceedings of the 2005 IEEE International Conference
on, April 2005, pp. 1803–1808.

[14] L. Jaillet, J. Hoffman, J. van den Berg, P. Abbeel, J. Porta, and K. Gold-
berg, “EG-RRT: Environment-guided random trees for kinodynamic
motion planning with uncertainty and obstacles,” in Intelligent Robots
and Systems (IROS), 2011 IEEE/RSJ International Conference on, Sept
2011, pp. 2646–2652.

[15] J. Rosell, A. Pérez, A. Aliakbar, Muhayyuddin, L. Palomo, and
N. Garcı́a, “The Kautham Project: A teaching and research tool for
robot motion planning,” in IEEE Int. Conf. on Emerging Technologies
and Factory Automation, ETFA’14, 2014.

[16] I. A. Suçan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012.

[17] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” Proceedings
of the International Symposium on Robotics Research (ISRR), 2013.

