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Abstract—Sampling-based approaches are currently the most construction of the roadmap or tree (e.g. [11], [12]); and d)
Effl(f?lent Onesd to S(Cjﬂve pathh plag_rlung problems, bemglthe_lr those that deform (dilate) the fre&space to make it more
performance dependant on the ability to generate samples in oy yansiy, i re i nnectivi 1
those areas of the configuration space relevant to the prohie. € p"_" s e_ to easily _Captu © t.s connectivity (e.g. [13R]I1
This paper introduces a novel importance sampling method DlmgnSIOH-reductlon t?Chn'queS' on the other hand, TOCUS
that uses Principal Component Analysis to focalize the regn on defining the submanifolds af-space where the solution
where to sample in order to increase the probability of findirg lies (or where a solution is more easily found), and where
CO”iSiOn'-free Conflguratlons The pl’Oposal is illustrat&l with a Samples are to be Obta”']ed, ||ke for |nstance Submar“folds
2D configuration space with a narrow passage and compared 0 yofinad by those configurations that satisfy kinematic clo-
the uniform random sampling method. . . . .

sure constraints [15], dynamic constraints [16], or a given

I. INTRODUCTION set of task-dependant geometric constraints [17], [18]].[1

Robot motion planning is already a mature discipline iAmong the dimension-reduction techniques, Principal Comp
robotics that deals with the problem of finding collisioedr nent Analysis (PCA) has been used to synthesize human-like
paths to move a robot from an initial to a goal configurahotion in graphic applications [20], and also to capture the
tion [1]. Planning is usually done in the Configuration Spaceupling between finger joints of anthropomorphic mechainic
(C-space), where the robot is mapped to a point and the obdtands, either for the search of grasping configurations, [21]
cles in the workspace are enlarged accordinghpfstacles). or for the planning of collision-free paths for the hand-arm
Among the planning methods, the sampling-based ones &ystem [22].
the best alternative to cope with problems with a high numberThe present paper proposes the use of PCA as an im-
of degrees of freedom. These methods avoid the expligiertance sampling method, i.e. to use PCA to focalize the
characterization of thé-obstacles, requiring only the collisionregion where to sample in order to increase the probabifity o
evaluation of a discrete set of sample configurations and thieding collision-free configurations. The paper is struetlias
interconnection of the free ones in either roadmaps (PR [dpllows. Section Il reviews the Principal Component Anadys
or trees (RRT [3]). These approaches were demonstrated tovigthod; Section Il presents the proposed approach, imfud
probabilistic complete (e.g. Kavraki et al. [4] determinéar the formal procedure, implementation issues and examples;
the basic PRM method, the number of samples necessarysggtion IV discusses and evaluates the contributions and,
achieve a probability of failure below a given thresholdjcg finally, Section V presents the conclusions of the work.
this number may be quite large, the key issue for obtaining a
good performance is the ability to generate samples in those 1. PRINCIPAL COMPONENTANALYSIS
areas ofC-space relevant to the problem, either by using
importance sampling or dimension-reduction techniqugs [5 Principal Component Analysis (PCA) is a statistical tech-
i.e. the generation of samples is one of the crucial factors fidue used to process a set of vectorial samples with the aim
the performance of sampling-based planners. of looking for a new base of the vectorial space whose axis

Importance sampling strategies, on one hand, increase it@icate, in a decreasing order, the directions of the space
density of samples in critical areas of tifespace. These with more information to discriminate the samples, i.e. the
strategies have been classified by Hsu et al. [6] into: a)ethddispersion of the samples is maximal along the first directio
that bias samples using workspace information (e.g. [7); [8°f the new base and decreases along the remaining ones. This
b) those that over-sample ti@&space but quickly filter any technique is frequently used to reduce the dimensiaf the
not-promising configuration (e.g. [9], [10]); c) those thathitial working space, using instead a subspace of dimensio

bias the sampling using the information gathered during tie < n defined by the firsin directions of the new base and
neglecting the others. PCA is a common preprocessing step
This work was partially supported by the Spanish Governntieisugh the  (;sed to simplify the problem in pattern recognition and clas
projects P109/90088, DPI12008-02448 and DPI2010-15446. e 0 ) 2
A. Pérez is also with the Escuela Colombiana de Ingenitlidio Gar- sification applications as well as in compression schemes an
avito”, Bogota D.C. in the field of motion and path planning, it is frequently used



Algorithm 1 PCA-based Sampling
Require:
Rs: region of C-space
Vs: sampling volume (oriented hyper-box)
S: set of at leastl collision-free samples fronR s
a: value in the ranggo, 1]
samples inSC k: number of configurations sampled at a time
Ensure:
S enlarged with up td new collision-free samples
Vs updated using the new collision-free samples

r = RAND( )
> if » > « then
1 Sk = SAMPLE-FROM(Rs, k)
else
. ) ) ) Sk = SAMPLE-FROM(Vs, k)
Fig. 1. llustration of the use of PCA to reduce the dimensainthe end if
workspace. The original 2-dimensional spa@tés defined byz; andzs, the if CARD(S;)> 0 then
mean of the set of samples @', the direction with maximal dispersion of Tk
samples is given by, and the new base is defined by andx/. Then, the Vs=PCA(S U Sk)
new working subspace is defined by, and the valid portion is constrained ~ €nd if
to the rangg— A1, A1]. S=5U Sk
return S, Vg

to reduce the dimension of the searching space and therefore T3

decreasing the running time of the planning procedures. i\ T3 .
There are different ways of performing the PCA [23]. 15 s 2o Pl

Basically, it can be done by computing the eigenvalue de- e

composition of a data covariance matrix or the singularevalu
decomposition of a data matrix, usually after mean cergerin 0
the data for each attribute. The larger the eigenvalueser th Rs |
singular values the larger the dispersion of the data along
the corresponding eigenvector direction; the eigenvecioe
directly used to define the directions of the new base.

Figure 1 shows a simple illustrative example of the use 6f9. 2. Regionizs and sampling volum&’s obtained using PCA for a three
PCA to reduce the dimension of the working spdc@he grey dmensionalc-space.
dots represent samples in a 2-dimensional space defined
by the original variabless; and z» (which may represent
two real features of the problem)’ represents the meannew collision-free configurations are obtained, i.e. mdie@ t
of the set of samples, so the samples are first modified @®cess adaptive to obtain a continuous improvement of the
& =Z—0'. Then, using PCA, a new base definedatjyand sampling performance. The sampling procedure proposed is
a4 (which could be considered 2 virtual features) determinesnceived as a local method, i.e. it is to be applied to a regio
a new reference system with the origin@t Now, since the Ry of the C-space where the area of interest is known to be
dispersion of the samples is larger alongg the component located (e.g. a narrow passage).

x4 is neglected, which is equivalent to consider the subspacerpe principal component analysis requires a minimum
SC C C defined only byz} as the working space instead ofyymper of samples equal to the dimension of the space.
C, so the dimension of the working space was reduced fropp,erefore, these samples are first obtained fiBm Then,
2 to 1. Finally, the actual workspace for the generation @ica is applied and the new basis is used to define a sampling
new samples is constrained to a portionSdf defined by the ygiume Vs where to obtain new samples (Fig. 2). It may
range[—A1, A1, such that it includes a desired percentage @k the case, however, thak do not cover the whole area
the original samples in the former reference system. of interest due to the particular set of samples used for the
principal component analysis. Therefolé will be used to
] generate new collision-free samples, but it will be recotagu
A. The key idea again to try to effectively cover it. This recomputation iwil
The key idea of the proposed approach is twofold: de performed with new collision-free configurations sardple
the use of PCA to define a new basis for the samplirfigppm both Vs and Rs. In summary, the sampling process
space able to generate with a greater probability collisioproposed is based on the sampling of configurations from both
free configurations in difficult areas of tliespace (the whole the regionRg of the C-space as well as from the sampling
new base is considered, i.e. no reduction of dimensionalityvolume Vg, that is periodically recomputed using the new
pursued); and b) the periodic recomputation of this basis sempled collision-free configurations.

z1

I1l. PROPOSED APPROACH
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Fig. 3. Graphical user interface with the workspace usecests t

B. Procedure

Algorithm 1 describes the sampling procedure. It uses the
following nomenclature and functions:

« d: Dimension of the configuration space.

o cARD(S): Returns the cardinality of sef.

« RAND(): Returns a random value in the rangel].
SAMPLE-FROM(B, n): Samplesn configurations from re-
gion B (a hyper-box of dimensiod) and returns those
collision-free.

Pca(s): Performs the Principal Component Analysis over
the samples of the sétand returns an hyper-box aligned
with the resulting new base, centered at the mean value
of S, and with the length of each side equal to two times
the deviation of the data in the corresponding axis.

The sampling procedure proposed has five parameters:

e Rg: The region ofC-space where the PCA-based sam-
pling is to be performed.

S: A set of at least collision-free samples fronkg.

Vs: The sampling volume obtained by performing the
Principal Component Analysis to the sgt

a: A value in the rangd0, 1] expressing the probability
to sample fromRg or from V.

k: The number of configurations sampled per call to the. An Example
sampling functiorsAmPLE-FROM.

Fig. 4. Snapshots of the sampling procedure with= 0.5 and & = 80.

The proposed approach is illustrated using the S-shaped
The algorithm computes a random valuén the rangef0,1] narrow passage shown in Fig. 3, where the whole GUI
and compares it to the threshald If r is greater thany a developed to test the algorithms is visible. Fig. 4 and 5 show
set of k samples are obtained frofis and those collision- some snapshots of the sampling procedure, that have been run
free are returned; otherwise the samples are obtained frafth o = 0.5 and different values of:

Vs. The algorithm returns the se&t enlarged with the new « In the example of Fig. 4 a value df = 80 has been
collision-free configurations, and the new sampling volume used. Snapsha shows the first configurations sampled
Vs (when no new collision-free samples are fourd is not from Rg. Snapshotd andc illustrate the volumé/s and
recomputed). new configurations obtained after calling the sampling



TABLE |
PERFORMANCE OF THEARMADILLO LIBRARY FOR THE EXECUTION OF
PCAON seTs 0OF10,000SAMPLES OF DIFFERENT NUMBER OF DEGREES

OF FREEDOM
dof 2 [ 3 5[ 79 [11]13
l(Dn?s'? Ume| 014 | 026 | 055 | 1.04 | 151 | 2.20| 3.01

Fig. 5. Snapshots of the sampling procedure with= 0.5 and & = 40.

Fig. 6. Set of circumferences used to test the coverage ofdtrew passage.

procedure usingRs and Vg, respectively. Snapshots

shows the final result. Using a high value bf the

first sampling results in collision-free configurations athe example shown in Section 1lI-C. The narrow passage

along the passage and therefore the first computationhgts been populated with circumferences of raditeqjual to

Vs is reasonably good. After two calls to the samplin§ie passage clearance, whose centers are located along the

procedure, i.e. after using a total of 300 samples, tf@ssage central axis and separateftee Fig. 6). Then, the

narrow passage is covered with the dispersion requiregiarameter to evaluate a sampling procedure is the number
« In the example of Fig. 5 a value &f= 40 has been used. of samplesN to be generated in order to populate each

In this case the first computation Bf; is not so good and circumference with at least one sample, i.e. the number of

more iterations are requirelfy is recomputed each time samples required to achieve a given dispersion of the sample

the sampling results in new collision-free configuration®n the narrow passage (with those samples in the narrow

The final snapshot (bottom-right) shows the resultingassage a probabilistic roadmap can for sure connect the

volume Vg and the narrow passage properly covered. entrance to the exit, although it may be achieved with less
samples).

Using uniform random sampling, the number of samples

The proposed approach has been implemented in C++ usiagquired to solve this problem has bedh = 484 + 29.
open-source cross-platform libraries such as Qt [24] fer tlthis value is compared to the value required when using the
user interface, Coin3D [25] for the graphical rendering angroposed PCA-based sampling algorithm. The valu&/dfas
PQP [26] for the collision detection. For the computatiothe been computed for different values afand k. The evalua-
PCA one possibility is to use Octave [27] or R [28] togethdion procedure is shown in Algorithm 2, where the function
with a package like the RCPP [29] to connect them to thevaLuate(s) returnstrue when all the test circumferences are
application. However, since our application requires tdggen  populated, orraLse otherwise. The cases at = 0 and
PCA within the sampling loop, the performance criteria is = 1 are not considered since the first one corresponds to the
considered a key factor, and for this reason the Armadilliform random sampling, and the second one only samples
C++ Linear Algebra Library has been used [30]. This librarin Vs, and therefore if the first computation &% does not
is open-source and has a good performance in response tdoger well the narrow passage it is completely uselesstfiee.
for large volumes of data, as shown in the experiments regorglgorithm always fails).
in Table I. The results are shown in Table Il and represented graphi-
cally in Fig. 7. It can be seen that the use of the proposed
sampling method always reduces the number of samples

This section evaluates the proposal and compares it remuired, being the maximum reduction of 57%, obtained for
the uniform random sampling. The evaluation is done dn= 80 anda = 0.8. Even using a small ratio of sampling

D. Implementation

IV. EVALUATION AND DISCUSSION



TABLE Il

Algorlthm 2 Evaluation MEAN NUMBER [N OF SAMPLES GENERATED AS A FUNCTION Ofx AND k.

Require:
Rs: region of C-space i o
a: value in the ranggo, 1] 0.2 0.4 05 0.6 0.8
k: number of configurations sampled at a time 5 | 280+40 | 239421 | 351425 — —
Ensure: 10 | 382+63 | 360+56 | 340+65 | 464+70 —
N: total number of samples generated 20 | 388+82 | 366153 | 344455 | 350442 | 368+50
40 | 376149 | 308+49 | 268+43 | 228+47 | 224426
S — SAMPLE-FROM(Rs, k) 80 | 336:73 | 320+51 | 224+36 | 216£35 | 20833

if CARD(S)< d then

repeat
S = SAMPLE-FROM(Rs, 1)

until CARD(S)= d used and the results tend to approach those obtained with
end if pure uniform sampling on the whole regi@y. For large
Xf:_P‘:iA(S) values ofa, on the other hand, the method could not
rep;at achieve the given dispersion using a reasonable amount

(S,Vs) = PCA-based Sampling(Rs Vs, S, o, k) of samples, and hence no values appear in the table.

N=N+k Consideringk = m?, the values ofk classified as small

until EVALUATE(S)=TRUE

return N in the 2D example correspond approximatelynto< 5. For

high-dimensional configuration spaces, due to the exp@ient
growth of the volume to be sampled, reasonable values of
will always be small (i.e. from a practical point of viem
will surely be in that range), and therefore in this case it is
advisable, as a general rule, to usec 0.5. As a future work
we are planning to make adaptive, starting with a low value

g and making it increase aBg improves the coverage of the
g— 400 difficult region of theC-space.

©

@ 200 V. CONCLUSIONS

In order to improve the efficiency of sampling-based meth-
ods, this paper has proposed a method to bias samples towards
difficult regions of configuration space, like narrow pagsag
based on the use of Principal Component Analysis applied
to the collision-free configurations. The sampling proeedu
proposed is conceived as a local method, i.e. it is to be egpli
to a regionRg of the C-space where the area of interest
is known to be located. The use of PCA results in a new
within Vs, e.g. usingy = 0.2, the reduction ofV is significant basis of the configuration space where a sampling volume
for any value ofk. Similar results have been obtained in othean be defined. Configurations sampled from that volume are
2D scenarios. It can be noted that: more prone to be collision-free, thus improving the sanplin

« Using large values of the number of required samplesgfficiency. This sampling volume is iteratively updated to
decreases for increasing valuescof The reason is that @Ssure the coverage of the region of interest, as new oolfisi
when using large values df, the first sampling volume ree configurations are sampled.

Vs obtained with the PCA already covers quite well The proposal has been implemented and evaluated satis-
the whole narrow passage because a representativefagorily, and results from a 2D example have been reported.
of configurations has been sampled, and therefore bet§ruse in high-dimensional configuration spaces is now unde
results are obtained when the probability of sampling i#€velopment, in particular to solve the problem of finding
Vs is higher (i.e. for larger values af). collision-free samples of a hand-arm robotic system, with

« Using small values of, the lowest value o is obtained UP t0 19 degrees of freedom, near the cluttered grasping
for values ofa equal or below0.5. In this case, the first configurations.
approximations of’s may not be good because they are
obtained with a set of configurations not representative
enough, and therefore the search of more configurationg y. choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. BuaL. E.
outsideVy is required. This can be achieved with a lower = Kavraki, and S. ThrunPrinciples of Robot Motion. The MIT Press,
value ofa in order to increase the probability of sampling _ 2005 , . . .
in Rs. The value ofa must be, however, not too small [2] L. E. Kavraki and J.-C. Latombe, “Randomized preproges®f con-

) : ] ’ figuration for fast path planning,” ifProc. of the IEEE Int. Conf. on
since then the information captured by the PCA is hardly  Robotics and Automation, vol. 3, 1994, pp. 2138-2145.

Fig. 7. Mean numbefV of samples required as a function bfand a.
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