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Abstract—This paper copes with the problem of finding a
collision-free path for a hand-arm robotic system from an initial
unconstrained configuration to a final grasping (or preshape)
one. The aim is to obtain a natural motion as a sequence of
human-like postures that both capture the coupling that there
exist between the fingers of the human hand and also maintain
the palm oriented towards the object to be grasped. The proposed
method is a sampling-based approach whose efficiency reliesin
the reduction of the dimensionality obtained by considering, for
the finger joints, a subspace determined by the main principal
motion directions that capture the coupling and, for the position
and orientation of the palm, the submanifold that satisfies
the orientation constraint. The approach is illustrated with an
example and compared to the case where no virtual constrains
are used, validating the proposal.

I. I NTRODUCTION

Over the last years there has been an increasing interest
in humanoid robots. Besides the aspects related to walking,
or those related with expression and human-robot interaction,
another key aspect of this type of robots is their manipulation
capability, directly linked to the availability of dexterous
hands. These hands are complex mechanical devices with a
number of degrees of freedom (DOF) ranging from 12 (four
fingers with 3 DOF each one) to 25 (five fingers with 4 DOF
each one plus some DOF in the palm) [1].

The use of mechanical hands rises the problem of finding
force-closure grasps, i.e. grasps that are able to resist any
external force applied to the object, as well as the problem
of finding collision-free motions of the hand from an initial
free and unconstrained configuration to the final grasping (or
preshape) one. When the considered hands are anthropomor-
phic, both the configuration of the hand when grasping the
object and its postures through the approaching motions are
usually desired to be human-like. This responds to an aesthetic
wish of mimicking the human beings, although not being
necessary from a practical point of view. The first relevant
work in this line is that of Santello et al. [2], that deter-
mined a two-dimensional grasp subspace from a set of hand
configurations obtained when different subjects where asked
to grasp several objects. This subspace captured the coupling
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Informàtica Industrial (IRI), CSIC-UPC, Barcelona, Spain.

between finger joints in grasping postures and was later used
for grasp synthesis [3], [4]. In a similar way we used principal
component analysis, with a set of unconstrained general hand
configurations obtained by demonstration, to model all the real
hand workspace (not only potential grasping configurations).
A bounded subspace was then sampled to create a roadmap
where collision-free motions were planned [5], [6], resulting
in sequences of anthropomorphic natural postures. All these
methods, besides providing the desired human-like featureof
the configurations of the mechanical hands, are very efficient
since they result in a substantial reduction of the degrees
of freedom of the problem. Similar dimensionality reduction
techniques have also been used to synthesize human-like
motion in graphic applications [7].

Besides constraining the motion of the fingers, the human-
like requirement may also constrain the motion of the palm
depending on the shape and size of the object to be grasped.
In this sense, for instance, if the object to be grasped is
small, the palm may be required to always look towards it
(this becomes mandatory if vision-feedback is used with in-
hand cameras). Visual constraints have been considered in
several works on robotics motion planning following different
approaches like, for instance, planning first the path of the
camera, determining from it the target trajectory in the image,
and using this information to command a control system with
visual feedback [8]. Other approaches merge sampling based
global path planning and visual servoing with in-hand camera
in order to obtain robot trajectories that keep the target in
the field of view avoiding any occlusion while avoiding robot
collisions and staying away from the robots joint limits, either
using rapidly-exploring random trees (RTT) [9] or proba-
bilistic roadmaps (PRM) [10] for this aim. RRTs and PRMs
are sampling-based path planners that randomly generate
collision-free samples of configuration space and connect them
with free paths capturing the connectivity of the free spaceby
forming trees and roadmaps, respectively. Their efficiencyis
highly dependent on the sample generation and, for difficult
path-planning problems like those involving narrow passages
or high degrees of freedom robots, the number of samples
required might be quite large, therefore, importance sampling
or dimension-reduction techniques have been used.

In a hand-arm system, the dimension reduction can be
achieved for the finger motions of the mechanical hand as de-



tailed above; the dimension reduction for the palm movements
can be achieved by considering virtual motion constraints.
In constrained-based motion planning problems, the robot is
constrained to a submanifold with lower dimensionality than
its embedding space. If sampling-based methods are used, the
planning of collision-free movements of a constrained object
does not require the sampling of the whole configuration
space, but only the regions of the configuration space where
the robot is allowed to move: its configuration submanifold.
These submanifolds can be easily described in terms of
geometric constraint sets by explicitly stating the relations that
must hold between two or more geometric entities. Geometric
constraint solvers, like PMF [11], can be used to find the
map between constraint sets and configuration submanifolds.
PMF was used in [12], where a constraint-based probabilistic
roadmap was proposed.

This work proposes a probabilistic roadmap to plan natural
motions for a hand-arm system. The proposal pursues effi-
ciency by planning in subspaces of lower dimension. For the
hand, a subspace determined by the main principal motion
directions that capture the coupling between the finger joints
is used, and for the arm, the submanifold that satisfies some
given orientation constraints. Planning in this subspaces, more-
over, results in sequences of anthropomorphic natural postures.
Next section formally presents the problem statement, the
solution overview and the organization of the paper.

II. PROBLEM STATEMENT AND SOLUTION OVERVIEW

Consider the Shunk Antropomorphic Hand (SAH) [13],
described in Section III, mounted on a six DOF Stäulbli TX90
robot. LetC = C f ×Cp be the configuration space of the hand-
arm system, withC f and Cp being the configuration spaces
of the finger joints and of the position and orientation of the
palm, respectively. Let also:

• cini = (cfini, c
p
ini) andcgoal = (cfgoal, c

p
goal) be the initial

and the goal configurations of the hand, withcfini and
c
f
goal being the configurations of the fingers, andc

p
ini and

c
p
goal those of the palm.

• Fp be the reference frame of the palm with itsx-axis,x̂p,
forming an angle of 60 degrees with the normal direction
of the palm (Fig. 1).

• P be the point located at 14 cm from the origin ofFp

alongx̂p. PointP is approximately the center of the hand
workspace.

• PW be the position ofP when the hand is atcgoal.

Then, the problem to be solved is the search of a collision-
free path connectingcini and cgoal, subject to the following
constraints:

• The postures of the hand-arm system must have an
anthropomorphic appearance.

• The hand must be moved in such a way thatx̂p always
points towardsPW (i.e. pointPW must always appear at
the center of the image, provided a camera is mounted
on the hand witĥxp as the camera axis).

x̂p

ŷp

ẑp

cgoal

PW = P

60o

Fp

Fig. 1. The location of the hand atcgoal is used to define pointPW .

The present paper proposes an approach to solve this prob-
lem, that can be easily generalized to any hand-arm system.
The solution is based on the construction of a probabilistic
roadmap whose nodes are configurations obtained by sampling
a lower-dimensional spaceSC = SC f × SCp with SC f ⊂ C f

andSCp ⊂ Cp:
• Finger joint values are obtained as a linear combination

of vectors that define the main principal motion directions
that capture the existing couplings between finger joints
(Section III). The coefficients are randomly obtained. The
vectors define the subspaceSC f , whose dimension is
usually not greater than five, being much lower than the
number of finger joints.

• The position and orientation of the palm is obtained by
sampling the variables that parameterize the submanifold
SCp that capture the coupling between position and
orientation (Section IV). The number of parameters is
4, less than the six required to fix the position and
orientation of a 3D object in the space.

The proposed path planning algorithm is shown in Section V
and illustrated and evaluated in Section VI. Section VII
presents the conclusions of the work.

III. SAMPLING FINGER JOINTS

A. Computing PMDs

Principal Motion Directions (PMDs) are coordinated move-
ments of the hand joints. They can be used to reduce the
problem of planning the motion of a mechanical hand, con-
sidering that the human hand has similar couplings. They are
obtained by taking samples of human hand postures using a
sensorized glove, mapping them to the mechanical hand and
then performing a principal component analysis (PCA) [14]
over the set of samples. The samples are taken with the
intention of covering the mechanical hand workspace. It is
worth to note that this mapping is critical to achieve such
goal, thus the more anthropomorphic the mechanical hand is,
the easier the mapping results.

As a mechanical hand, we use the Schunk Antropomorphic
Hand [13] (Fig. 2a). It has four identical fingers and one is
equipped with an additional joint to function as the opposing
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Fig. 2. a) The anthropomorphic mechanical hand SAH and b) thesensorized
glove, both with labelled joints.

thumb. Each finger has four joints, one for abduction and
three for flexion, with two of them coupled, having therefore
three independent degrees of freedom (DOF) per finger. In
total, it has 13 DOF. As a sensorized glove to capture human
hand positions we use the CyberGlovec© from CyberGlove
Systems (shown in Fig. 2b). It is a fully instrumented glove
that provides up to 22 joint-angle measurements using resistive
bendsensing technology, it includes three flexion sensors per
finger, four abduction sensors between the fingers, a palm-
arc sensor, and two sensors to measure the flexion and the
abduction of the wrist.

The mapping from the glove sensors to the mechanical hand
SAH is done according to the relation in Table I (using the
joint labels from Fig. 2). This mapping makes the motions of
the SAH hand to be defined with 11 independent parameters,
although it has 13 DOF (details on this mapping can be
found in [5]). With this mapping, the set of samples captured
when the operator freely moves the hand are mapped into
the mechanical hand workspace, and it is there were a PCA
analysis is done. The PCA involves the computation of the
eigenvalue decomposition of a data covariance matrix or the
singular value decomposition of a data matrix, usually after
mean centering the data for each attribute.

The result of the PCA over the samples is the set of vectors
(PMDs) that define a new base ofC f (the corresponding
reference frame is located at the mean center valueb as shown
in Fig. 3). PMDs can be represented as the columns of a matrix
E = (ê1, ê2, . . . , êF ), whereF is the dimension ofC f.

B. The sampling procedure

A subspaceSC f ⊂ C f of smaller dimension can be obtained
by selecting the PMDs with higher associated variances.
Choosing the first five, an accumulated total variance of 95%
is obtained. This number has been considered enough for this
work, and thereforeSC f will be defined by a subsetE ’ of E:
E′ = (ê1, ê2, . . . , ê5).

The sampling procedure obtains samples from an axis-
aligned box inSC f centered atb and with the size of each

TABLE I
CORRESPONDENCE BETWEEN THECYBERGLOVE SENSORS(FIG. 2B) AND

THE JOINTS OF THESAH HAND (FIG. 2A).

Cyberglove Sensor SA Hand Joint
Id. Name Id. Name
c thumb roll 0 thumb base
c thumb roll 1 finger base (thumb)
e thumb inner 2 proximal phalanx (thumb)
f thumb outer 3 medium phalanx (thumb)
j index abduction 4 finger base (index)
g index inner 5 proximal phalanx (index)
h index middle 6 medium phalanx (index)
- medium abduction 7 finger base (medium)
k medium inner 8 proximal phalanx (medium)
l medium medium 9 medium phalanx (medium)
n ring abduction 10 finger base (ring)
o ring inner 11 proximal phalanx (ring)
p ring medium 12 medium phalanx (ring)

0
θ
h
1

θ
h
2

θ
h = Ee+ b

θ
h = E′

e+ b

ê1

ê2

b

λ1

−λ1

Fig. 3. A 2-dimensional spaceCf modelled with two PMDs, i.e.E =
(ê1, ê2), obtained from the input dataset (gray points). The subspace SCf is
supposed to be 1-dimensional and defined byE′ = (ê1). Samples (big red
dots on theê1-axis) are obtained from the sampling box that in this case is
the segment(−λ1, λ1).

side,2λi, chosen proportional to the standard deviation of the
samples alonĝei, such that the box contains around 95% of
the samples. This sampling region is then uniformly sampled,
and the samplese are directly mapped into the real hand
workspace as:

θ
h = E′

e+ b (1)

wheree = (e1, . . . e5) with ei ∈ [−λi, λi]. See Fig. 3 for a
graphical interpretation on a 2-dimensional space.

IV. SAMPLING THE PALM POSITION AND ORIENTATION

A. Orientation constraint

It is desired that the orientation of the palm be such that vec-
tor x̂p always points towardsPW . The submanifold ofSE(3)
that satisfies this orientation constraint is 4-dimensional, i.e.
the motion of the palm is constrained to four degrees of
freedom, three of translation defining the position of the
origin of Fp and one of rotation defining the rotation ofFp

aroundx̂p, as illustrated in Fig. 4.
Given a position of the origin ofFp, Op = (x, y, z), the

following rotationR1 must be applied in order to satisfy the
orientation constraint. Let:



PW

(x, y, z)
x̂p

ŷp

ẑp

α

Fig. 4. Parametersx, y, z and α of the 4-dimensional submanifold that
satisfies the orientation constraint.

PW PW
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n̂

r̂
β

x̂wx̂w

ŷwŷw
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x̂p

ŷp

ẑp

x̂p

ŷp

ẑp

R1 = Rot(β, n̂)

Fig. 5. RotationR1 = Rot(β, n̂) to satisfy the orientation constraint.

• r̂: be the unitary vector pointing fromOp to PW .
• n̂: be the unitary vector normal to the plane defined by

x̂p and r̂:

n̂ =
x̂p × r̂

||x̂p × r̂||
(2)

• β: be the angle between̂xp and r̂.

Then, the rotationR1 is the rotation of an angleβ around
the directionn̂, as illustrated in Fig. 5:

R1 = Rot(β, n̂) (3)

Finally, the homogeneous transformation that defines the
position and orientation ofFp satisfying the orientation con-
straint is:

Tp =









x

R2R1 y

z

0 0 0 1









(4)

whereR2 is any given rotation around̂xp:

R2 = Rot(α, x̂p) (5)

B. The sampling procedure

The sampling of the position and orientation of the palm
taking into account the orientation constraint is done by sam-
pling the 4-dimensional submanifoldSCp ⊂ Cp that complies
with the constraint. The four degrees of freedom are:

• (x, y, z): the position ofOp.
• α: the angle of rotationR2.

The sampling procedure uses uniform sampling generated
with a random sampling source. Parameters are sampled in the
range[0, 1]. Then, position parameters are scaled to the range
determined by the task workspace and the orientation param-
eter to the range[−π, π]. Finally, the four-tuple(x, y, z, α)
obtained is used in Eq. (4) to obtain the homogeneous trans-
formation that defines the position and orientation of the palm,
and the inverse kinematics of the robot is used to compute the
joint angles of the arm.

V. PROPOSED APPROACH

A. Sample generation

Let c = (cf , cp) be a configuration ofC, with cf ∈ C f and
cp ∈ Cp, and letsc = (scf , scp) be a configuration ofSC, with
scf ∈ SC f andscp ∈ SCp.

Algorithms 1 and 2, calledSampleFingerJoints and SamplePalm,
sample configurations ofC f andCp, respectively. Algorithm 1
returns a self-collision-free configurationcf ∈ C f, and Al-
gorithm 2 returns a configuration of the palm that satisfies
the orientation constraints and that is feasible (i.e. an inverse
kinematics solution for the robot arm exists). They use the
following functions:

• dim( S ): Returns the dimension of the spaceS.
• RAND(k,[a, b]): Returns a vector of dimensionk whose

components have random values in the range[a, b].
• MAP1( scf ): Returns the configurationcf ∈ C f corresponding

to the samplescf ∈ SC f, as detailed in III-B.
• MAP2( scp): Returns the configurationcp ∈ Cp correspond-

ing to the samplescp ∈ SCp, as detailed in IV-B.
• SELFCOLLISION( cf): Informs whether the configurationcf ∈

C f makes the hand to be in self-collision.
• GETPOSITION( cp): Returns the three-dimensional position

vector corresponding to configurationcp.
• GETORIENTATION( cp): Returns theα value of rotationR2

(Eq. 5) corresponding to the orientation ofscp (it is
assumed thatcp belongs to the manifold that satisfies the
orientation constraint).

• INVKIN( cp): Returns true if there exists an inverse kine-
matics solution of the robot arm that poses the palm at
configurationcp, or false otherwise.

In order to ease the connection of the initial and goal
configurations to the roadmap, the procedureSamplePalm is
used to obtain samples around the segment that joints the
positions ofcpini andcpgoal. Let cp

k be a configuration obtained
as a linear interpolation ofcpini and c

p
goal, then SamplePalm

obtains a sample of the palm as follows. The position is
randomly sampled within a cube of size2ρx centered at the
position corresponding tocp

k; the orientationα is randomly
sampled within a interval of size2ρα centered at the value
of α corresponding tocp

k. The values ofρx and ρα take
smaller values ascp

k approachescpgoal, in order to reduce
variability and ease the obtention of free samples around the
goal configuration (that is a preshape configuration very close
to the objects).



Algorithm 1 SampleFingerJoints
repeat

scf = RAND(dim(SC f), [0, 1])
cf = MAP1(scf)

until SELFCOLLISION( cf ) = false
return cf

Algorithm 2 SamplePalm
Require: c

p
k

, k
x

p
k

= GETPOSITION(cp
k

)
αk = GETORIENTATION(cp

k
)

repeat
ρx = (5 + k20)cm
ρα = π/4 + kπ/4
xp = x

p
k
+ RAND(3, [−ρx, ρx])

α = αk + RAND(1, [−ρα, ρα])
scp= (xp,α)
cp= MAP2(scp)

until INVKIN( cp ) = true
return cp

B. Sample interconnection

The procedureConnectSample, shown as Algorithm 3, per-
forms the connection of a configurationc to a roadmap,G. It
uses the following functions:

• FINDNEIGHBORS(c): Find theK-nearest neighbors ofc from
all the nodes of the roadmapG. With a given low
probability, adds the goal or the initial configurations as
neighbors.

• SAMECOMP(ci,cj ): Returns true ifci and cj belong to the
same connected component ofG, or false otherwise.

• LOCALPLAN(ci ,cj ): Returns true if a collision-free path be-
tween ci and cj exists, or false otherwise. This path
is computed from a linear interpolation inSC, and
therefore all the configurations of the path are such that
the orientation of the palm satisfies the constraints. This
has a unique exception when connectingcini, since the
initial configuration is not required to satisfy them (cgoal
satisfies it by construction), therefore neither do the edges
connectingcini with any node inG.

• ADDNODE(c,G): Adds nodec to graphG.
• ADDEDGE(ci ,cj ,G): Adds edge (ci,cj) to G.
• UPDATE(G): Updates the connected components ofG.

C. The general PRM algorithm

Algorithm 4 presents the construction of the roadmap. It
uses the following function:

• INTERPOLATE(cp
i

,cp
j

): Returns a configuration of the palm,
c

p
k, obtained as a linear interpolation between configura-

tionscpi andcpj , and the interpolation parameterk ∈ [0, 1],
such thatcp

k = c
p
i whenk = 0 andcp

k = c
p
j whenk = 1.

• COLLISION(c): Informs whether the configurationc ∈ C
makes the hand-arm system to be in collision with the
environment.

The configurations sampled by Algorithm 4 are such that
several finger configurations are associated to a single palm
configuration. The rationale behind this decision is that in
cluttered environments, like it will be usually the case near

Algorithm 3 ConnectSample
Require: c, G

ADDNODE(c,G)
N = FINDNEIGHBORS( c)
for all g ∈ N do

if SAMECOMP(g,c) = false and LOCALPLAN(g,c) then
ADDEDGE(g,c,G)
UPDATE(G)

end if
end for
return G

Algorithm 4 PRM.
Require: cini, cgoal

G← ∅

ConnectSample(cini, G)
ConnectSample(cgoal, G)
repeat

if RAND(1,[0,1])< 0.5 then
cp= SamplePalm(cgoal )

else
(cp

k
, k) = INTERPOLATE(cp

goal
, cp

ini
)

cp= SamplePalm(cp
k

, k)
end if
for i = 1 to cloudsizedo

cf= SampleFingerJoints()
c = (cf , cp)
if COLLISION( c ) = false then

ConnectSample(c,G)
end if

end for
if time>maxtime then

return failure
end if

until SAMECOMP(cini, cgoal) = true
return G

the goal configuration, collision-free motions will most likely
require finger motions.

Once the roadmap is built, the A* algorithm is used to
connect the initial and the goal configurations. Then, the
solution path is smoothed. The smoothing procedure tries to
connect all the nodes of the solution path between them, except
for the initial node. The nodes of the solution path and all the
collision-free edges found are inserted in a new graph together
with the edge connecting the initial node. Then the A* is run
on this new graph, obtaining a smoothed shorter path. The
initial node is treated differently becausecini may not belong
to the solution manifold satisfying the orientation constraint,
and the path that connects it to another configuration is desired
to be as short as possible. If it were included in the smoothing
procedure a longer first edge could result.

VI. EXAMPLES

As an example to illustrate the proposed approach, the
SAH hand is required to move, among obstacles, from an
unconstrained configuration to a preshape configuration to
grasp a can. Fig. 6 (Top) shows the snapshots of the solution
path encountered when the task has been programmed with
the orientation constraint and using the PMDs. Snapshots1-2,
and4-5, are nodes of the PRM along the solution path, being
the first and the last one the initial and goal configurations,
respectively. Snapshot3 is an intermediate configuration. The
value of variablescloudsize andmaxtime in algorithm 4 has been



Fig. 6. Snapshots of the results: (Top) task simulation using the orientation constraint; (Middle) task execution using the orientation constraint;
(Bottom) task simulation without using the orientation constraint .

TABLE II
COMPARISON BETWEEN ALTERNATIVES

Sampling Total
Constraints Success # Nodes Time (s) Time (s)
With 100% 90± 71 8.9± 6.7 85± 68
Without 62% 37± 9 169± 85 198± 80

set to 3 and 300 s, respectively.
The same task has been programmed without using the

orientation constraint. Fig. 6 (Bottom) shows snapshots of
this later case corresponding to nodes of the PRM along the
solution path (the initial and goal are the same as before).
Table II shows the results of the comparison in terms of
number of nodes and computational efficiency measured as
computational time (running on a PC@3GHz) used by the
sampling procedures and by the PRM algorithm (which in-
cludes the time spent by the local planner). The sampling time
is much shorter when considering constraints because in this
case samples are more often collision-free and feasible (i.e.
with an existing inverse kinematics solution for the robot).

The benefits of using PMDs for a better efficiency and
human-like appearance, was shown in [5]. The present pro-
posal of using virtual constraints further benefits in both senses
as shown in the table and in the snapshots. The task has
actually been executed in the Lab, as shown in Fig. 6 (Middle),
and both simulation and real execution can be seen in the
accompanying video, where the real execution goes beyond
the preshape configuration and grasps and lifts the can.

VII. C ONCLUSIONS

This paper has presented an efficient path planning method
to find collision-free paths for a hand-arm system from an
initial unconstrained configuration to a final grasping (or
preshape) one. Efficiency has been obtained by reducing the
dimensionality of the problem by both coupling the finger
joints in a similar way as the human hand, and coupling
the orientation and position of the palm to meet additional
requirements. The resulting planner produces collision-free

movements of the hand-arm system as a sequence of anthro-
pomorphic natural postures. Future work is focused on the use
of rapidly exploring random trees instead of a roadmap, and
in the consideration of a wider range of constraints for the
motion of the palm.
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