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Abstract— Path planning methods are well suited to automat-
ically perform robotic tasks; haptic guidance is a powerful tool
for disabled people rehabilitation, sports training, handcraft
skills acquiring and such kind of enactive tasks. This paper
proposes a novel an efficient method to accomplish guided
movements by efficiently combing path planning methods and
haptic guidance.

The main contribution of this paper is the development
of a reliable method to haptically guide the user within a
virtual robotic task, by means of: on-line, collision free, path
planning generated trajectories. To accomplish haptic guidance
three stages must be correctly done: the first one where the
user selects the desired objects and obstacles within a virtual
environment to set up the task, the second one, where a path
planner looks for the task trajectory and, the third one, where
the user is constrained to on-line generated local channels and
solution paths that offer a reliable path guidance system to
achieve the task movements.

I. INTRODUCTION

Path planning methods are well suited to automatically
perform robotic tasks [1]. Haptic Guidance is commonly
used for training and rehabilitation, mostly within virtual
environments [2]. From the combination of path planning
and haptic devices two approaches can be distinguished:
the first one, where the user aids the path planner to get a
better path (aided path planning), for example, by improving
a Road Map by adding free samples in difficult C-space
zones [3]. The second one is about the use of a path planner
to find a trajectory that is subsequently used to guide the
user by means of a haptic device. Path planning haptic
guidance applications can be found, for example, in CAD and
assembly tasks guidance [4], [5], [6] or to help users to guide
virtual vehicles [7]. In the field of nanotechnology, potential
field path planners have been used to position virtual reality
nanoparticles using a haptic device [8], [9].

The main contribution of this work is the development
of a reliable method based on haptic primitives to feedback
the user into the correct movement to achieve a selected
task without collisions. Our proposed methodology is able to
construct the haptic guidance trajectories on the fly avoiding
the need to have pre-calculated trajectories as some other
haptic guidance methods do [10].
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The proposed methodology has three stages: 1) the user
selects the desired free-flying robot and the obstacles to
use them within a virtual environment to set up the task.
A XML file is used to set up the robots/obstacles config-
uration and the GNU/GPL C++ libraries Qt4 and Coin3D
are used to create a Computer Graphic Interface to load
those 3D models. 2) Our hierarchical C-space decomposi-
tion, deterministic sampling, harmonic-function-based path
planner, named Kautham Planner, looks for a collision free
channel path connecting the start and goal configuration to
complete the task. 3) the user is constrained to some haptic
primitives conforming a reliable path guidance system to
achieve collision free task movements, this is done using
the OpenHaptics library [11].

This paper is structured as follows: In section II a brief
explanation of the Kautham path planner is presented. In
sections III and IV there is a detailed description of the
guiding components. In section V a detailed description of
the novel discrete method to obtain the haptic guiding forces,
based on haptic primitives is presented. In section VI some
results and an application example is developed, finally in
section VII, some conclusions are given.

II. THE KAUTHAM PATH PLANNER

The Kautham Path Planner was initially a R2 path planner
based on Harmonic Functions and Probabilistic Cell De-
composition whose output was a collision free channel of
cells [12]. The planner evolved to support R2, R3, SO(n)
and SE(3) topologies based on: 1) Deterministic sampling
sequence 2) Hierarchical C-space decomposition, and 3)
Harmonic functions and the solution channel was improved
by considering distances [13], [14]. The Kautham Planner
was then used to haptically guide a user on the execution of
teleoperated assembly tasks, using a simple force-generation
pattern based on balls [15].

The Kautham path planner is based on a deterministic
sampling sequence because it offers an uniform and incre-
mental coverage of the C-space, within a latice structure;
then a hierarchical cell decomposition of the C-space is
iteratively performed using Harmonic functions to get a
collision-free channel of cells connecting the cell containing
the initial configuration sample and the cell containing the
goal configuration sample.

That means, the C-space is hierarchically decomposed into
non-uniform cells to group samples, capturing the C-space
structure. Cells are not just classified as free or forbidden as
in traditional methods, instead, our method describes the cells
using a transparency parameter dependent on the number of
free and forbidden samples in the cell. This transparency



parameter is used to control the collision detection and the
cell partition procedures.

Collision detection procedure is used in a lazy evaluation
manner, so that only few samples are collision checked. A
cell partition procedure is used to create a cell division only if
the cell is not homogeneous enough. The harmonic function
is computed using the successive over-relaxation method
(S.O.R) to guide hierarchical cell decomposition procedure.

The solution channel is obtained by following the negated
gradient of the harmonic function H1. Starting at the initial
cell, the next cell is iteratively chosen among the neighbors
such that it has the lowest H1 value, until the goal cell with
H1 value fixed at UL is reached. The obtained channel is
composed of cells with different transparency values.

III. LOCAL CHANNELS

A local channel is a channel of cells that can be used to
guide the user from his current position (uq) to the target
configuration. A definition of the basic motion planning
problem can be stated as follows [16]:

Let the world W be W = R3, such world contains an
obstacle region O ⊂ W , and let A be a robot A ⊂ W .
Let q ∈ C-space be a free configuration from A, such
that q = (xt, yt, zt, h) (where h is an unitary quaternion);
The forbidden region, Cobs ⊂ C-space, is defined as:

Cobs = {q ∈ C-space | A(q) ∩ O 6= ∅} (1)

Cobs is the set of all configurations q such that A(q), the
transformed robot, intersects the forbidden region. The rest
of the C-space configurations are known as the free space
configurations, which are defined as Cfree = C-space \ Cobs.

For the path planning problem, a free start configura-
tion qini ∈ Cfree and a free goal configuration qend ∈ Cfree
must be defined. Then, the complete path planning algorithm
gets a free path τ : [0, 1] → Cfree, where τ(0) = qini
and τ(1) = qend or it reports the absence of the free path.

A. Local channel components

Since our approach uses a discrete representation of the
C-space based on cells, we can adapt the previous definitions
by using sets of cells instead of regions. Our C-space model
can be expressed in terms of three sets of cells differentiated
about the transparency thresholds ∆obstacle and ∆acceptance

as shown:

C = CH1 ∪ CF ∪ CO (2)

where:
• C is the set of all the cells composing the C-space

model.
• CH1 is the set of the cells of the channel found with

the Kautham planner. The transparency of these cells is
high and satisfies:

Tj ≥ ∆acceptance (3)

• CO is the set of the cells with a transparency lower
than ∆obstacle, those cells may contain an obstacle.

CO = {cp | Tj < ∆obstacle} (4)

• CF is the set of the free cells with transparency higher
than a ∆obstacle, that are not in the set CH1.

CF = {cf | cf ∈ C\CH1 ∪ CO} (5)

Since our haptic guidance method builds the local channel on
the fly, the user movement is not restricted to the Kautham
planner solution channel CH1 but to any local channel
connecting the cell where the user position lies and the target
cell. Then, the initial cell cini ∈ CH1 ∪ CF is the cell which
contains the initial configuration from where the user starts.

A local solution channel SG is any ordered set of cells
that can be used to guide the user from any cell cini ∈
C\CO inside the C-space model to the goal cell cend. A
local solution channel SG can be expressed as the set of
adjacent cells a , b, whose potential values are Ua and Ub

respectively, ordered as indicated in (6).

SG = (X,≤)⇒ ∀a, b ∈ X : a ≤ b⇔ Ua > Ub (6)

where cini is the lower bound of the ordered set X
and cend is the upper bound of the set X . So, the relation
cini ≤ a, a ≤ b and b ≤ cend holds. Finally, we know a cell
since it will always become our current cell, so, the final
task is to find the next cell b.

Let N be the set of all the neighbor cells of a, and U the
set of the potential values linked to every value of N, then
Ub = min{U} and b is the next cell with potential value Ub .
Obtaining the neighbor cell is a procedure that can be sped
up if a ∈ CH1 since in this case only the neighbor cells
pertaining to CH1 are considered.

B. Local channel transitions

In the following paragraphs, the way to transit from cell to
cell throughout a local channel is presented. To understand
the methodology a Petri Net based model is presented as
depicted in Fig. 1. The aim of the model is to let the
user go from cell to cell in a stable way, that is, avoiding
strong magnitude force generation due to the change on the
direction of the magnitude force vector.

IV. LOCAL PATHS

A local path is a path composed by linear segments,
connecting the current user configuration uq to the goal
configuration qend, that is τ : [uq, qend] → CH1 ∪ CF . This
local path is used to keep the user inside the local channel. In
the following paragraphs the procedure needed to construct
and navigate thorough local paths is presented.

A. Local path segments

In the previpus section we have defined the set N to be the
set of all the current cell cc neighbor cells and the set U to
be the set of potential values of the cells cj ∈ N. Then, the
next cell cn in the guidance sequence is the cc neighbor cell
with a lowest potential value: cn = cj ∈ N | min {U} = Uj .



Fig. 1: Petri Net defining the channel navigation. Guiding
forces will suggest the user’s motions, i.e. they will try to
control the firings of the transitions.

The position of each cell is given by its center, such as pc

is the position of the cell cc and pn is the position of the
cell cn. Fig. 2a shows a pair of neighbor cells where the
elements cc, cn, pc and pn are depicted.

The smallest cell cs between the pair cc and cn can be
found by comparing the size wc of cc and the size wn of cn:

cs =

{
cn if wn < wc

cc if wn ≥ wc
(7)

Let the point ps be the position of smallest cell cs which
size is ws, and let the movement axis vm be an unit vector in
the x̂, ŷ or ẑ direction. The movement axis vm is parallel
to one of the coordinate axis and the point ps lies on it.
To get vm, the auxiliary vector vd that goes from pc to pn

should be obtained first.

vd = pn − pc (8)

now, from vd = vdxx̂ + vdyŷ + vdz ẑ we can get vm by
using (9).

vm =


vdx

|vdx |
x̂ ifmax

{
|vdx
| ,
∣∣vdy

∣∣ , |vdz
|
}

= |vdx
|

vdy

|vdy |
ŷ ifmax

{
|vdx
| ,
∣∣vdy

∣∣ , |vdz
|
}

=
∣∣vdy

∣∣
vdz

|vdz |
ẑ ifmax

{
|vdx
| ,
∣∣vdy

∣∣ , |vdz
|
}

= |vdz
|
(9)

Finally, the local path segment τl is the line segment that
intersects the point ps in the direction of vm and whose
bounding points are given by the lower bounding point Pl

and upper bounding point Ph, defined below. Then, the local
path is continuous in a closed interval τl : [Pl,Ph]→ CH1∪
CF .

The lower bounding point can be obtained using (10).

Pl =

{
pc −

(
wc

2

)
· vm if pc = ps

ps −
(
wc + ws

2

)
· vm otherwise

(10)

(a) Axes and their boundaries. (b) Axes and their boundaries.

Fig. 2: Local paths elements.

The upper bounding point can be obtained using (11).

Ph =

{
pc +

(
wc+wn

2

)
· vm if pc = ps

ps otherwise
(11)

Fig. 2b depicts the following local path components: cs,
ps, vm, τl, Pl and Ph.

B. Local path transitions

In the previous paragraphs, a local path segment with
fixed lower (Pl) and upper (Ph) bounds was generated.
Nevertheless, our goal is to have a local path connecting
the start and goal configurations. Such a local path can be
obtained by joining the local path segments, which implies
a flexible bound definition. A mechanism to do so consists
on keeping the previous cell co local path segment until the
user enters the current cell cc, then an auxiliary local path
segment may be constructed to connect the previous local
path segment and the current one.

Then, to realize correct haptic guidance through local
paths three cells are needed: the previous cell co, the current
cell cc an the next cell cn. Furthermore, at least two local
paths segments are needed, the previous one τlo and the
current one τlc.

To guide the user from co to cn, the previous local path τlo
is kept from co by enlarging its upper bounding point Pho

to a new point fixed inside the current cell cc. Due to the
fact that cells co and cc could have different size and, distinct
configurations between the previous movement axis vmo and
the current movement axis vmc exist, some auxiliary path
segments connecting vmo and vmc may be needed. Finally τlc
is used to guide the user from the current to next cell.

Two basic configurations between the previous movement
axis vmo and the current one vmc are described bellow:

Perpendicular axes: The axis vmo and vmc are perpen-
dicular if the dot product between vmo and vmc is zero:

vmo · vmc = 0 (12)

Two subcases may occur:
1) Coplanar perpendicular axes: Fig. 3a shows a coplanar

case.
2) Non-coplanar perpendicular axes: this case is depicted

in Fig. 3b.



(a) Coplanar perpendicular. (b) Not-coplanar perpendicular.

Fig. 3: Perpendicular axes cases.

Parallel axes: The axis vmo and vmc are parallel if the
magnitude of the cross product between vmo and vmc is
zero:

|vmo × vmc| = 0 (13)

Then, the first step is to identify the case in which the
axes vmo and vmc are, to do so, two vectors will be defined.
• The vector vau between the center of the previous

smallest cell center pso and the center of the current
smallest cell psc

vau = psc − pso (14)

• If vau has zero magnitude, then, we can conclude the
axes are collinear parallel. If the product magnitude is
different from zero, then a new vector vum is obtained
from the cross product between vau y vmc.

vum = vau × vmc (15)

Now, from those vectors, we can obtain the particular case in
which the vectors are by using the two previous equations.
The three different cases for parallel axes are:

1) Collinear parallel axes: the axes vau and vmc are
collinear parallel if the following condition holds:

v̂au − vmc = 0 (16)

This case is depicted in Fig. 4a.
2) Coplanar parallel axes: the axes vau y vmc are copla-

nar parallel if the following condition holds:

|vum| = 1 (17)

This case is depicted in Fig. 4b.
3) Non-coincident parallel axes: The axes vau and vmc

are non-coincident parallel if neither condition (16) nor
condition (17) are satisfied.
Fig. 4c depicts a non-coincident parallel case.

V. GUIDING FORCES

Haptic guidance inside the local channels is done using a
pair of neighbor cells cc y cn to get a force that results from
the sum of three particular forces as shown in (18).

F = Fg + Fc + Fr + Fd (18)

(a) Parallel collinear axes. (b) Coplanar parallel axes.

(c) Non-coincident parallel
axes.

Fig. 4: Parallel axes cases.

where:
• F is the local channel guiding force.
• Fg is the force that guides the user from the current

cell cc to the next cell cn.
• Fc is the force that constrains the user to the local

path τl.
• Fr is the force that repels the user from the neighbor

cell cj when the user tries to leave the current cell cc and
such a neighbor cell is different from the next cell (cn).

• Fd is the damping force, it is a force proportional to user
movements velocity that avoids oscillations troughout
the guidance.

To guide the user, some haptic primitives are used, those
primitives are: snap to linear local path (τl) and snap to a
vertex (to achieve the final configuration). In the following
paragraphs, the procedure to get the forces that constrain the
user to the primitives is explained.

A. Current to Next cell guiding force Fg

Fg is a constant force, it has the same direction as vm

and points from cell cc to cell cn. This force can be got
from the basis that where established in the previuos sections
using (19).

Fg = kgvm (19)

where kg is an empirically obtained constant.

B. Local path guidance force Fc

Fc is the force that constrains the user to the local path τl.
The following lines explain how to get some useful vectors
to obtain Fc using the current cell (cc) and the next cell (cn).

Let vqs be the vector from the current user configura-
tion uq to the smallest cell center ps, then vqs may be got
using (20).



vqs = ps − uq (20)

Let va be an auxiliary vector resulting form the cross
product between vqs and the vector defining the current
movement axis direction vm, then va may be got using (21).

va = vqs × vm (21)

Let vp the projection of the vector vqs onto the surface
with normal vm in which the point uq lies, then vp may be
got using (22).

vp = vm × va (22)

Finally vp is the vector to be used to get the force that
constrains the user to the local path using (23).

Fc = kcvp (23)

where kc is an empirically obtained constant.

C. Repelling force
Fr is the force that is felt when the user enters a neighbor

cell cj different from the next cell cn, then, the user is
repelled from this cj cell to let him back to the solution
current channel. It should be noticed that when the user
enters a cj cell it does not turn on the current cell cn as if he
entered the next cell. The repelling force Fr is a strong force
in which the influence of the current local path is augmented.

The repelling force is generated if: 1) cj is a free cell
different from the next cell, in other words, if cj ∈ N 6= cn
and if (Tj ≥ ∆obstacle), 2) when cj belongs to the forbidden
cells, in other words, if cj ∈ N 6= cn and if (Tj < ∆obstacle)
and, 3) when the user is out of the current local path bounds.
To get the repelling force, three kinds of penalty vectors have
been proposed:

vlp = (|vp| − wc) v̂p (24)

vcp =
(
|vp|+ |vp|3 − wc

)
v̂p (25)

vbp = (|uq − pc| − wc) v̂m (26)

The repelling force Fr is the product of a penalty constant
times the selected penalty vector. If the neighbor cell cj the
user is trying to penetrate is a free cell then the linear penalty
vector is chosen (24), is the neighbor cell is an obstacle cell
then the cubic penalty vector is chosen (25), if the user tries
to leave the current local path then the out of bounds penalty
vector is chosen (26), finally if the neighbor cell is the next
in the channel cell cn then no repelling force is generated.
The repelling force is then:

Fr =


0 if cj = cn

krvbp if out of path bounds

krvlp if cj ∈ C\CO
krvcp if cj ∈ CO

(27)

(a) Virtual scene. (b) Harmonic Function 1.

(c) Solution channel cells. (d) Haptic Guidance Platform.

Fig. 5: Example on path planning based haptic guidance.

VI. RESULTS

A R2 demonstration example is presented. Fig. 5a shows
the virtual scene as the free flying robot and the obstacles
have been loaded and graphically rendered. The scene con-
sists of a cube robot that must pass through a narrow corridor.
The initial position is at the top-right corner and the goal
position at the bottom-left corner.

Fig. 5b shows the harmonic function values as they
descend from the initial configuration cell to the goal cell.
Since the harmonic function has been computed all over the
C-space model, the guiding local paths can be obtained on-
line from any point within the workspace. That means that
there are not pre-calculated trajectories but on the fly useful
trajectories the user can have despite his position.

Fig. 5c shows the solution channel cells, i.e. those cells
inside the local solution channel SG whose potential values
where found to be a solution to the harmonic function
relaxation. User position is depicted using a big sphere, the
current cell is highlighted and the next cell center is depicted
using a small sphere. Notice that, despite the haptic guidance,
this visual aid is presented so the user can have both visual
and haptic feedback, making the system more reliable.

Fig. 5d shows the experimental platform, the user is guided
using the Phantom Omni haptic device, the computer has an
Intel Core Duo @ 2GHz CPU with 2GB RAM. The applica-
tion can be compiled using Visual Studio 2008, furthermore
Qt v4.6, Coin3D v3.0, Quarter v1.0 and OpenHaptics HD
v3.0 C++ libraries must be installed, it works under Windows
7. Source code is GNU/GPL and it is available through
subversion from [17].

Fig. 6a depicts the obtained trajectory from a user that
has been haptically guided, notice that he passes through
the narrow corridor without collisions. Fig. 6b shows the



(a) Haptically assisted trajectory.

(b) Not assisted trajectory.

Fig. 6: Haptically assisted vs. not assisted trajectories.

trajectory that results from a user moving the cube robot
without any haptic aid, notice that the user collisions when
entering the narrow corridor, considering the user is trying to
apply the same velocity he used when he had been haptically
guided.

VII. CONCLUSION

The development of a reliable method based on haptic
primitives to feedback the user into the correct movement to
achieve a selected task without collisions has been presented.
Our system, based on the Kautham path planner is able to
find a solution channel to complete a selected task within a
virtual reality scenario. Then, stable haptic guidance is done
within the local channel by means of local paths connecting
the start and goal configurations.

The proposed methodology is able to construct the local
paths on the fly, so there is no need to have pre-calculated
trajectories to perform the haptic guidance. Furthermore, a

visual aid is offered so the system feedback is complete and
reliable.

As future work R3 and SE(3) demonstrative examples
are being prepared. An UDP client-server approach will be
included so reaction forces running at another computer,
from the virtual environment, could be added.
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