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Abstract: This paper addresses the problem of designing a planning algorithm for anthro-
pomorphic dual-arm robotic systems to find paths that mimics the movements of real human
beings by using first-order synergies (correlations between joint velocities). The key idea of
the proposal is to convert captured human movements into a vector field of velocities, defined
in the configuration space of the robot, and use it to guide the search of a solution path.
The motion planning is solved using the proposed algorithm, called FOS-BKPIECE, that is a
bidirectional version of the KPIECE planner working with an improved version of the extension
procedure of the VF-RRT planner. The obtained robot movements follow the directions of
the defined vector field and hence allow the robot to solve the task in a human-like fashion.
The paper presents a description of the proposed approach as well as results from conceptual
and application examples, the latter using a real anthropomorphic dual-arm robotic system. A
thorough comparison with other previous planning algorithms shows that the proposed approach
obtains better results.
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1. INTRODUCTION

Motion planning is nowadays a quite researched issue in
robotics, even more since the robots became a vital part
of many application fields (e.g. the electronic and medical
industries, or the computational biology and computer
animation). The importance of this problem is manifested
when the motion planning of mechanical hands or anthro-
pomorphic dual-arm systems is attempted, i.e. systems
involving a high number of degrees of freedom (DOF).
In addition to this, sometimes not only a valid path is
required but also the one that optimizes some path quality
metric (e.g. minimizing the path length or the execution
time). This is a typical problem in the humanoid robotics,
where the motion planning should not only focus on the
efficient search of a valid solution, but also on the search of
robot movements that mimic the movements of the human
beings. Pursuing this goal, the human-robot collaboration
is facilitated because the humans can adjust their motions
to avoid possible injuries or enhance the collaboration
since they are familiar with the robot motions (Fukuda
et al., 2001).

The motion planning of complex systems have been ad-
dressed with different planning algorithms, being the
sampling-based planners the most commonly used (El-
banhawi and Simic, 2014). Among them, the Probabilis-
tic Roadmap planners, PRM (Kavraki et al., 1996), or
the Rapidly-exploring Random Trees, RRT (Kuffner and
LaValle, 2000), are the most outstanding. However, these
algorithms are non-optimal. To find an optimal solution,
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some variants like the PRM∗ and RRT∗ algorithms have
been proposed (Karaman and Frazzoli, 2011).

In order to obtain human-like movements, the right coordi-
nation between the robot joints is crucial and therefore the
real movements of a human being are commonly used as a
reference (Argall et al., 2009). Relevant pioneering works
dealt with the grasping problem analyzing the correlations
of the finger joints when the human hand was grasping ob-
jects (Santello et al., 2002). These correlations were called
hand postural synergies and mapped into a mechanical
hand (Ciocarlie and Allen, 2009). The synergies existing in
the human hand were also used for other objectives such as
the analysis and design of robotic hands in order to mimic
human grasps (Ficuciello et al., 2014), the design of specific
hand control systems (Wimböck et al., 2011), or the iden-
tification of the hand pose using low-cost gloves (Bianchi
et al., 2013). Nevertheless, there exist other approaches
that instead of studying the hand synergies while grasping
an object, they compute them from hand movements when
the human tries to cover the whole hand configuration
space in an unconstrained way (Sun et al., 2010). These
synergies can be used then to simplify the motion-planning
problem by reducing the dimension of the search space
as well as to mimic human postures (Rosell et al., 2011).
More recently, a compliant model, called soft synergies,
was also introduced and used in the selection of grasping
forces, in their control, and in the control of the motion of
the grasped object (Gabiccini et al., 2011). In addition, the
synergies were used in a dual-arm anthropomorphic system
while performing manipulation tasks (Suárez et al., 2015).

All these works dealt with synergies involving correlations
between joint positions. Nevertheless, it seems natural to
complement the information embedded in these traditional



Fig. 1. Human operator performing a task with both hands
while wearing the measurement equipment.

Fig. 2. The box containing the zero-order synergies de-
fines the relevant region of C, called 0B. In turn 0B
is divided into synergy cells so that the first-order
synergies in each cell are different (left). A grid of
tree cells in 0Br, i.e. the subspace spanned by the first
r zero-order synergies (u1 and u2 in the figure), is
used to estimate the coverage of the whole C (right).

synergies with new synergies computed from samples cap-
tured in the velocity space of the system, generalizing
thereby the concept of postural synergies. These synergies
obtained in the space of the first derivative of the configu-
ration trajectories were called first-order synergies (Garćıa
et al., 2015). In that work, the position synergies were
used, on the one hand, to detect the relevant region of
the configuration space, i.e. the area where the synergies
have been computed. On the other hand they were used to
classify the first-order synergies by dividing this box into
several synergy cells where the first-order synergies are sig-
nificantly different. Moreover, studies made by Grinyagin
et al. (2005) and Vinjamuri et al. (2007) expressed the
angular velocities of finger joints as linear combinations
of a small number of kinematic synergies, which were also
angular velocities of finger joints. The kinematic syner-
gies were also used in tracking arm movements (d’Avella
et al., 2006). However, the velocity synergies have not been
investigated in dual-arm movements neither used in the
motion planning of bimanual tasks. Therefore, this opens
a completely new field of research that is addressed in this
work.

After this introduction, Section 2 presents the problem
statement and gives an overview of the proposed approach,
Section 3 details the proposal, the approach is validated
in Section 4 and finally Section 5 presents the conclusions
and future work.

2. PROBLEM STATEMENT
AND APPROACH OVERVIEW

The goal of this work is to solve the motion planning of
an anthropomorphic dual-arm robot trying to mimic the
movements that a human does to solve a given task. To
this end, a sampling-based planning algorithm is designed
and the movements of human operators are used to guide
the motion planning. The main features of the proposed
approach are the following:
(1) Human movements are captured, and then mapped

to the anthropomorphic dual-arm robotic system,
in order to obtain the synergies that exist in the
dual-arm movements when humans solve a task.

(2) The computed synergies are used to generate a vector
field over C, the configuration space of the robot. This
vector field guides the motion planning by assigning
a desired velocity to each configuration in C.

(3) The synergies are also used to select the subspace 0Br,
a lower-dimensional subspace in C, that contains a
predefined high portion of the sample variance of the
captured movements. During the motion planning,
the projection of the tree samples into 0Br gives an
idea of the coverage of C.

(4) A bidirectional sampling-based planning algorithm,
called FOS-BKPIECE, is designed to bias the tree
growth towards the directions of the vector field.
Hence, human-like movements are obtained. The pro-
posed planner is based on the planners VF-RRT (Ko
et al., 2014) and KPIECE (Şucan and Kavraki, 2010).

3. PLANNING PROCEDURE

3.1 Generating vector fields from synergies

This subsection presents a procedure to capture synergies
from human operators and model them as a vector field
of desired velocities. As stated in the previous section,
the movements of human beings are used here to plan
human-like motions for anthropomorphic dual-arm robots.
First, with magnetic trackers and sensorized gloves, the
position and orientation of the human wrists are captured
during the execution of a given task (see Fig. 1). The
wrists of the dual-arm robot are placed at the captured
poses, by solving the inverse kinematics, in order to map
the human movements to the robotic system (Suárez
et al., 2015). Then, the synergies are computed in the
robot configuration space. The concept of first-order syner-
gies (correlations between DOF velocities) was introduced
by Garćıa et al. (2015), and in turn the couplings of DOF
positions were called zero-order synergies. The Principal
Component Analysis (PCA) of the captured configuration
samples in the joint space, returns a new basis of C with
the axes ordered according to the sample dispersion along
them. Each axis represents a zero-order synergy and the
movement along it, equivalent to a single DOF, implies
the coordinated movement of several (or all) the actual
DOF of the system. The first-order synergies are obtained
similarly, but in this case using velocity samples computed
from the measured positions.

The zero-order synergies are used here to detect the
relevant region of C, called box 0B, where the captured
motions take place (see Fig. 2). Note that the directions
of human movements depend on the region of C where



Fig. 3. Benchmarking of themodifiedVF-RRT.
A mobile robot travels from the start to the
goal position trough the unit square, where
no obstacles are present and different vector
fields f are defined (a-c). The directions
of f are depicted by red stream lines and
the magnitude of f is denoted by the back-
ground color (changing from blue to green
as ‖f‖ grows). The black lines show the
paths with minimum upstream criterion. a) b) c)

they take place. Taking this into account, 0B is divided
into synergy cells, where the first-order synergies returned
by the PCA of the velocity of the samples contained in
a cell are significantly different to the ones of the other
cells (Garćıa et al., 2015). Then, the first-order synergies
are used to generate a vector field that assigns a desired
joint velocity for each configuration q ∈ C. For a robot
with n DOF the desired velocity of q is randomly picked
from the subspace spanned by the first p ≤ n first-order
synergies of the synergy cell where q lies. If q lies outside
0B, the closest synergy cell is used. Finally, the zero-order
synergies are also used to define a subspace 0Br ⊆ 0B
that is spanned by the first r ≤ n zero-order synergies (see
Fig. 2). The projection of the sample trees into 0Br helps
to detect the unexplored areas of C.

3.2 Planning on vector fields

This subsection proposes a method to grow sample trees
along the directions of a vector field as a parameterless
variant of the planner VF-RRT (Ko et al., 2014).

The motion-planning problems where there is a preferred
direction of movement for each configuration are well
framed as motion planning on vector fields. To solve this
kind of problems, an RRT-based planner, called VF-RRT,
was proposed. This planning algorithm adjusts the ran-
domly sampled nodes towards the vector-field direction as
follows. Let v̂rand be the advance direction resulting from
the RRT sampling and v̂field be the vector-field direction.
Then, both directions are combined to obtain v̂new, the
actual advance direction:

v̂new = ωrand v̂rand + ωfield v̂field (1)

with ωrand ≥ 0 and ωfield ∈ R ensuring that ‖v̂new‖ = 1
and that ‖v̂rand − v̂field‖ ≥ ‖v̂new − v̂field‖. The weights
ωrand and ωfield are controlled by a parameter λ > 0 such
that v̂new → v̂field if λ → ∞ and v̂new → v̂rand if λ → 0.
Nevertheless, λ is not a fixed parameter, it is adaptively
adjusted according to the progress of the motion planning
(i.e. λ decreases if difficulties are found in growing along
the vector-field directions and vice versa).

In the work of Ko et al. (2014), λ is initialized to a pre-
defined λinit and is updated every k iterations as follows.
First, let q be a configuration candidate to be added to
the sample tree and a rectilinear segment in C be called
motion. Then, q is considered as being efficient if:
a) m, the motion reaching q , is collision-free, and
b) δ, the distance between q and its closest configuration

in the tree, is greater than a predefined δineff ∈ [0, ǫ],
where ǫ is the standard RRT step-size parameter.

Let Eineff∈ [0, 1] be the rate of inefficient nodes found in the
last k iterations, and E∗

ineff be a reference value for Eineff.
Then, λ is updated as λ′ = λ (1+E∗

ineff−Eineff). Thereby,

Table 1. Average results of the motion plan-
ning of the benchmarking problems.

f
VF-RRT
version

Success
rate (%)

Planning
time (s)

Number of
iterations

Upstream
criterion

Solution
length (m)

a)
Modified 100 0.2665 1266 0.421 1.753
Original 90.1 0.6222 3135 0.529 1.679

b)
Modified 100 0.1863 672 0.146 1.870
Original 96.5 0.4629 2540 0.469 1.614

c)
Modified 100 0.1641 541 0.675 1.495
Original 93.1 0.4000 1956 1.140 1.403

λ grows if Eineff < E∗

ineff and vice versa. Note that λinit,
k, δineff and Eineff are user-defined and that some suitable
values may be difficult to find. In addition, the parameter
configuration is highly problem-dependant.

For these reasons, a new method to update λ is proposed
here. First, λ is initialized to λmax, i.e. a high enough value
so that the tree follows the vector field at the first iteration.
As opposed to the original procedure, λ is updated at each
iteration. Hence a smooth continuous growth of the tree is
ensured. The new value λ′ is computed as

λ′ =

{

λ e
−1

if m is in collision

λ e
1−2

(

1− δ
ǫ

)0.3

otherwise
(2)

Finally, λ is clamped to the range [λmin, λmax] to prevent
it from underflowing or growing too much unnecessarily.
λmin and λmax are set to 10−3 and 105, respectively, since
no significant changes are observed in v̂new when λ varies
from 0 to λmin or from λmax to ∞. Note that in this way,
the user does not need to define any parameter and λ still
decreases if it is difficult to grow the tree following the
vector field (i.e. m implies collision or δ → 0).

To test the performance of the proposed modifications of
the VF-RRT planner, a set of 2D benchmarking problems
have been set up. They consist of a mobile robot navigating
in an obstacle-free square of side length 1 m, where three
different vector fields have been established (see Fig. 3).
The upstream criterion U , proposed by Ko et al. (2014),
is used as a quality metric in the comparison of the
solution paths obtained with the original and the proposed
VF-RRT. U measures the extent to which a path P goes
against a vector field f(q) and is computed as:

U =

∫

P

‖f(q)‖ −
f(q)·q̇

‖q̇‖
dq (3)

Thereby a path with lower U is less deviated with respect
to the directions of the vector field and, therefore, is
considered to be better. For instance in case the vector field
is computed with human movements, the lower U a path
obtains, the better the human movements are mimicked.
A maximum planning time of 5 seconds is considered
in the experimentation. If a path is not obtained within



Algorithm 1: FOS-BKPIECE
Input : Query configurations qstart, qgoal ∈ C
Output : Valid path P from qstart to qgoal

1: GA.AddMotion(qstart, qstart, ‖qgoal−qstart‖)
2: GB.AddMotion(qgoal,qgoal, ‖qstart−qgoal‖)
3: for i← 1 to N do
4: qinit ← RandConf(GA.SelectCell( ))
5: qbias ← RandConf(GB.TopExteriorCell( ))
6: qnew ← NewConf(GA,qinit, qbias)
7: if ValidMotion(qinit,qnew) then

8: GA.AddMotion(qinit,qnew, ‖qbias−qnew‖)
9: qbridge ← RandConf(GB.CellContaining(qnew))

10: if qbridge 6= ∅ and ValidMotion(qbridge, qnew) then

11: GB.AddMotion(qbridge, qnew, 0)

12: return Path(GA,GB)

13: Swap(GA,GB)

14: return ∅

Algorithm 2: NewConf
Input : Grid G and configurations qinit ∈ G, qbias ∈ C
Output : Configuration qnew

1: if ‖qbias−qinit‖ ≤ ǫ then return qbias

2: v̂field ← FOS(qinit)
3: if RootedAtGoal(G ) then v̂field ← −v̂field

4: if Rand01( ) < Pbias then v̂rand ← UnitVector(qbias−qinit)
5: else v̂rand ← RandDir(qinit−G.Parent(qinit))
6: v̂new ← NewDir(v̂rand, v̂field)
7: return qinit+ ǫ v̂new

Fig. 4. Hypothetical representation of the planning proce-
dure: Two sample trees, rooted at the configurations
qstart and qgoal, explore C pursuing their connection.
To estimate the coverage of C, the trees are projected
to the subspace 0Br ⊆ C, where a cell-based discre-
tization is established. The cells of 0Br containing
tree nodes are classified, based on their number of
neighbors, as interior or exterior (filled in orange
and purple, respectively). At each iteration, a tree
is expanded from a configuration qinit to a new con-
figuration qnew. The advance direction v̂new lies in
the blue region and is a combination of a random
direction v̂rand, lying in the green region, and the
direction v̂field of the first-order synergies.

this time, the execution is marked as a failure. Table 1
shows the resulting average values of the success rate,
the planning time, the number of iterations, the path
upstream criterion U and the solution length. Note that
for each vector field, 100 executions have been run for the
modified VF-RRT and that 10000 different parameter con-
figurations were used for the original planner. In order to
consider all the possible instances of the original VF-RRT,
the value of its parameters have been uniformly chosen
at random from the corresponding intervals and a high
enough maximum value for k has been considered. The ap-
proach proposed in this work has been implemented within
The Kautham Project (Rosell et al., 2014), a motion
planning and simulation environment developed at the Ins-
titute of Industrial and Control Engineering (IOC-UPC)
for teaching and research, and was run in a 3.40-GHz
Intel i7-3770, 4-GB RAM PC. From the simulation results
shown in Table 1 it can be appreciated that the modified
VF-RRT outperforms the original planner in all aspects: it
obtains better solution paths (i.e. with a lower U) and in
less time. In fact, the original VF-RRT is not able to find
a solution within the time restriction for some executions.

3.3 The FOS-BKPIECE planning algorithm

The proposed planning algorithm, called FOS-BKPIECE,
is introduced in this subsection. The basic structure of the
algorithm is similar to the bidirectional implementation
of the KPIECE planner provided by the Open Motion
Planning Library (Şucan et al., 2012). The KPIECE
planner guides the exploration of C using a projection of
the tree samples into a discretized space: the sample tree
is mostly extended from samples lying in the boundary
of this discretization. Note that although the KPIECE
planner applies a bias towards the unexplored areas of C,
it does not use any nearest-neighbor structure to select

the node that must be extended, as any RRT-variant does
(e.g. VF-RRT). This produces a considerable reduction
of computational load and settles the problems that may
appear if the euclidean distance is not a good metric for
the configuration space (Palmieri and Arras, 2015).

Additionally, the proposed FOS-BKPIECE planner uses
the introduced modifications of the VF-RRT planner to
guide the tree towards the synergy directions. Hence,
solution paths that mimic the human movements are
obtained. The planner is described in Algorithm 1 and
has the following main features:

• Two trees, rooted at the start configuration qstart and
at the goal configuration qgoal (Lines 1-2), are steered
towards each other while exploring the configuration
space C. The function AddMotion(qinit, qnew, d )
inserts the motion from qinit to qnew in the tree, so
that qinit becomes the parent node of qnew. d is a
measure of the closeness of qnew to the other tree and
it is used to figure out how easy it may be to connect
the trees trough qnew (see Fig. 4). Hence d can be an
estimation of the actual minimum distance between
qnew and any configuration in the other tree.

• The trees are projected into 0Br to guess the explored
areas of C, or at least their projection into 0Br (see
Fig. 2). 0Br has been divided into tree cells of a pre-
defined cell size. The cells where each tree lie, referred
as grids GA and GB, are classified as interior cells if all
their neighbor cells contain tree nodes; or as exterior
cells otherwise (see Fig. 4). The tree cells must not
be confused with the synergy cells in which 0B is
divided, and that contain first-order synergies (see
Subsection 3.1). Moreover, the cells in GA and GB are
sorted by an heuristic-based score. Preference is given
to the tree cells that: a) are exterior; b) have fewer
neighbors; c) have been more recently populated;



d) contain fewer tree nodes; and e) their nodes are
close to the other tree and have been fewer times used
to grow the tree (Şucan and Kavraki, 2010).

• At each iteration, the tree in GA grows from a confi-
guration qinit, randomly selected from the tree nodes
in the top-scored cell of GA (Line 4). qinit is extended
to a new configuration qnew (Line 6), by an increment
step ǫ, steered towards the first-order synergies and
qbias (Line 5), a configuration randomly selected from
the top-scored tree cell on the boundary of GB, the
other grid (see Fig. 4). If the motion from qinit to qnew

is collision-free (Line 7) it is added to GA, using the
distance between qbias and qnew as an overestimation
of the measure d (Line 8).

• The connection of the trees is attempted trough a
motion between qnew and qbridge, a configuration
randomly selected from the nodes in the tree cell of
GB to which qnew would be projected (Line 9). If the
motion is valid, it is added to GB and the solution
path from qstart to qgoal is returned (Lines 10-12).
Otherwise, the tree roles are exchanged (Line 13).

The proposed planner uses the function NewConf, out-
lined in Algorithm 2, to grow a tree from a given qinit to
some qnew. For that, the next procedure is followed:

• If qinit is in the neighborhood of qbias, i.e. the trees are
closer than a distance ǫ, no synergy bias is applied and
qnew is qbias itself (Line 1). Otherwise, the advance
direction v̂new is steered by the direction v̂field of the
first-order synergies and a random direction v̂rand.

• v̂field is the velocity of the vector field associated
with qinit (Line 2) and it is computed as described
in Subsection 3.1. When the tree rooted at qgoal is
extended, v̂field must be reversed (Line 3).

• v̂rand points towards qbias with a probability Pbias

(Line 4). Otherwise, v̂rand is some random unit vector
that satisfies v̂rand · (qinit−qparent)≥ 0 (see Fig. 4),
where qparent is the parent node of qinit (Line 5).

• v̂new is a combination of v̂rand and v̂field (Line 6),
as shown in Fig. 4 and described in Subsection 3.2.
Finally, qnew is the configuration at distance ǫ from
qinit in the direction of v̂new (Line 7).

Good results are obtained setting Pbias to 0.05, being ǫ
problem-dependant. The dimension r of 0Br is chosen so
that the variance related to the first r zero-order synergies
surpasses the 95% of the total variance. Similar procedure
is followed with the number p of first-order synergies used
to compute v̂field. As suggested by Şucan and Kavraki
(2010), the size of the tree cells is chosen so that 20 cells
fit along each axis of 0Br.

4. VALIDATION OF THE APPROACH

4.1 Conceptual example

For illustrative purposes, a simple example has been set up
consisting of a mobile robot travelling in an obstacle-free
square of side length 1 m. The start configuration qstart is
at the top-left corner and the goal configuration qgoal is at
the top-right corner. Four regions with different first-order
synergies have been artificially defined (see Fig. 5-a): the
first-order synergies point downwards in the left region,
rightwards in the middle-bottom region, and upwards in

a) b)

c) d)

Fig. 5. Conceptual example: A mobile robot must go
from qstart to qgoal, preferably along the directions
of the first-order synergies (a). Four regions has been
artificially imposed over C, each one with different
synergy directions (denoted by arrows). Trees and so-
lutions paths obtained with the FOS-BKPIECE (b),
VF-RRT (c) and RRT∗(d) planners are shown. The
paths are depicted by red lines. Interior and exterior
tree cells are filled in orange and purple, respectively.

Table 2. Average results of the motion plan-
ning of the conceptual example.

Planner
Success
rate (%)

Planning
time (s)

Number of
iterations

Upstream
criterion

Solution
length (m)

FOS-BKPIECE 100 0.125 452 0.513 3.831

FOS-KPIECE 100 0.298 775 0.494 3.880

VF-RRT 100 0.406 812 0.491 3.914

RRT∗ 100 5 992 0.505 3.517

the right region. However the synergies do not establish
a clear direction in the middle-top region. Note that in
this example n = r = p = 2 and 0Br is C itself. The
problem has been solved with the FOS-BKPIECE but also
with a non-bidirectional version of the proposed planner,
called FOS-KPIECE; the original VF-RRT; and the RRT∗.
The parameters of the VF-RRT have been empirically
set and the RRT∗ has been modified to minimise U , see
Eq. (3). Some of the obtained solution paths are shown in
Fig. 5. It can be appreciated how the sample trees grow
with a greater pace in the sense defined by the first-order
synergies of each region, thus encountering a good quality
solution. Note that the sample trees of the FOS-BKPIECE
and of the VF-RRT remain close to the solution path.
However with the RRT∗ the sample trees spread com-
pletely over C, with the consequent waste of time. Table 2
shows the average results after 100 executions of the men-
tioned algorithms, with the planning time limited to 5 s.
All the planners obtain similar upstream criterion values,



a)

b) c)

Fig. 6. Solution paths obtained with the planner FOS-BKPIECE: snapshots of the path execution with the real dual-arm
robot for the assembly task following fF (a); and start and goal configurations in the simulation environment,
showing the translational planned path, for the assembly task following fA (b) and the bottle task following fF (c).

Table 3. Average results of the motion planning of the application problems (1-3) using the
planners FOS-BKPIECE (a), FOS-KPIECE (b), VF-RRT (c) and RRT∗ (d).

Problem 1) 2) 3)

Planner a) b) c) d) a) b) c) d) a) b) c) d)

Success rate (%) 100 100 100 100 100 100 100 100 100 100 100 100

Planning time (s) 0.489 0.665 3.688 100 0.367 0.886 2.970 100 0.406 0.829 2.158 100

Number of iterations 154 115 290 14036 88 216 232 14423 94 224 206 13737

Upstream criterion 3.234 3.197 3.174 3.042 5.047 4.954 4.746 4.642 4.912 4.735 4.707 4.690

Solution length (rad) 3.862 4.135 4.090 3.818 4.279 4.404 4.368 4.509 4.244 4.378 4.105 4.795

Valid motion rate (%) 91.69 93.25 72.09 55.29 90.64 92.30 74.45 54.77 85.60 94.33 79.71 54.55

being U a little bit higher with the FOS-BKPIECE due to
its greedy attempt to connect the trees; but it is the fastest
planner thanks to its bidirectionality (3 and 40 times
faster than the VF-RRT and the RRT∗ planners, respec-
tively). However, the non-bidirectional proposed algorithm
FOS-KPIECE is still faster than the others.

4.2 Application example

The planning of the movements of an anthropomorphic
dual-arm robotic system is used for a real example of the
proposed planning procedure. The used dual-arm robot
is composed of two UR5 industrial robotic arms from
Universal Robots, assembled emulating the human arm
configuration. Each arm has 6 DOF and is equipped with
a 16-DOF Allegro Hand from SimLab (see Fig. 6). Hence,
for the planning of the arm movements the configuration
space C has dimension n=12. For this example, the motion
planning of the following tasks is considered:

• Assembly: A human-demonstrated task that consists
in grasping, from a table in front of the body, a soda
can with one hand and a cylindrical box with the
other and moving both objects to a pre-assembly pose
that allows the insertion of the can into the box.

• Bottle: A non-demonstrated task that consists in
grasping, from a table in front of the body, a bottle
with one hand and the bottle cap with the other and
then tapping the bottle.

The movements of three human operators have been cap-
tured while performing 10 times the assembly task. From
the captured data, the zero- and first-order synergies are
computed and 0B is found, i.e. the region of C containing
the zero-order synergies. Based on synergy differences, 0B

is split into 21 synergy cells (as those predefined in the
conceptual example). Then using the computed synergies,
the vector field fA is obtained. In addition, pursuing the
general application of the proposed approach, the same
procedure is applied to the movements of the human
operators while moving both arms in an unconstrained
random way, trying to cover the workspace in front of
the body. With this, the natural movements of the human
operators are collected even though the whole workspace
may have not been completely covered. Using these cap-
tured movements, called free-movements, 0B is split into
64 synergy cells and the vector field fF is generated.

The motion planning has been solved for the next cases:

(1) Assembly task following the directions of fA.
(2) Assembly task following the directions of fF.
(3) Bottle task following the directions of fF.

Notice that, except in the first case, the motion planning
has been solved following the directions of movement of
another task. Thereby, it is tested the utility of fF as a
general-purpose vector field in case a task-specific vector
field is not available (i.e. when the task has not been
demonstrated). As in the conceptual example, the planners
that have been used are the proposed FOS-BKPIECE
and FOS-KPIECE, a fine-tuned version of the original
VF-RRT, and an RRT∗ modified to minimise the upstream
criterion U . For the first two cases, representative solu-
tion paths obtained with the FOS-BKPIECE planner are
shown in Fig. 6, both in the simulation environment and
with the real dual-arm robot. For the three studied cases,
Table 3 shows the average results of the motion planning
after 100 executions and with a time limit of 100 s. Note
that the solution length is measured in C, as the sum of



joint movements, and that additionally the valid motion
rate is collected, i.e. the proportion of iterations in which
no collisions occur and the tree actually grows. It can be
appreciated that the paths that best follow the human
movements, i.e. the ones with the lowest U , are obtained
with the RRT∗ but at the expense of a prohibitive planning
time. The fastest planner is the proposed FOS-BKPIECE,
without significantly impairing the upstream criterion.
The planner FOS-KPIECE is still faster than the VF-RRT
and RRT∗, and obtains similar U values. For the assembly
task, lower U values are obtained with the task-specific
vector field than with fF. However, the paths of both tasks
solved with fF mantain the human apperance (see Fig. 6).

5. CONCLUSIONS AND FUTURE WORK

This paper has proposed a planning algorithm for anthro-
pomorphic dual-arm robots, called FOS-BKPIECE and
that founds a path with movements similar to the ones of
a human being. For this purpose, the zero- and first-order
synergies of the robot (i.e. couplings of DOF positions
and of velocities, respectively) have been computed from
real human movements. Then, the configuration space C
is split into synergy cells, using zero-order synergies, and
each cell is paired with a set of first-order synergies.
Thereby, a vector field of velocities is generated (i.e. an
assignment of a velocity to each configuration in C based on
the human movements). Paths following this vector field
can be obtained with the planner VF-RRT. However, this
implies several parameters that need to be finely tuned for
each problem. For that reason, a parameterless VF-RRT,
that exposes better results than the original one, is in-
troduced in this paper. The proposed FOS-BKPIECE is
based on this modified VF-RRT and also on the KPIECE.
To illustrate the presented ideas, the presented approach
has been compared with the original VF-RRT and the
RRT∗ planners in conceptual and application examples.
The obtained results show that the proposed procedure
obtains paths that follow better the human movements.

Future work is focused on the application of the proposal
to a system composed of several collaborative robots.
The extension of the proposed planning method to the
kinodynamic motion planning is another interesting topic.
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Suárez, R., Rosell, J., and Garćıa, N. (2015). Using
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Wimböck, T., Jan, B., and Hirzinger, G. (2011). Synergy-
level impedance control for a multifingered hand. In
Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Sys-
tems, 973–979.


