
Ontological Physics-based Motion Planning for
Manipulation

Muhayyuddin, Aliakbar Akbari and Jan Rosell
Institute of Industrial and Control Engineering (IOC)

Universitat Politcnica de Catalunya (UPC) – Barcelona Tech
Barcelona, Spain, jan.rosell@upc.edu

Abstract—Robotic manipulation involves actions where con-
tacts occur between the robot and the objects. In this scope,
the availability of physics-based engines allows motion planners
to comprise dynamics between rigid bodies, which is necessary
for planning this type of actions. However, physics-based motion
planning is computationally intensive due to the high dimension-
ality of the state space and the need to work with a low integration
step to find accurate solutions. On the other hand, manipulation
actions change the environment and conditions further actions
and motions. To cope with this issue, the representation of
manipulation actions using ontologies enables a semantic-based
inference processe that alleviates the computational cost of
motion planning. This paper proposes a manipulation planning
framework where physics-based motion planning is enhanced
with ontological knowledge representation and reasoning. The
proposal has been implemented and is illustrated and validated
with a simple example. Its use in grasping tasks in cluttered
environments is currently under development.

Index Terms—Physics-based motion planning, Dynamic simu-
lations, Knowledge-based reasoning, Manipulation.

I. INTRODUCTION

Motion planning problems deal with computing the
collision-free trajectory from a start to a goal state in the con-
figuration space, that is the set of all possible configurations
of the robot [1]. During the last decade, the field of motion
planning has evolved from the basic geometric problems
(such as the piano mover’s problem) to the kinodynamic
motion planning problems for complex robotic systems [2].
The kinodynamic motion planning algorithms consider both
the kinematic (geometric) and the dynamic (differential) con-
straints while planning. The most significant class of motion
planning methods are those based on the sampling of the con-
figuration space, such as the Rapidly-exploring Random Trees
(RRTs [3]) and Kinodynamic Planning by Interior-Exterior
Cell Exploration (KPIECE [4]). Both of these methods are
sampling-based kinodynamic motion planners for systems
with differential constraints, and KPIECE is particularly suited
for systems with complex dynamics.

Typically, all these kinodynamic algorithms focus on com-
puting the collision-free trajectories in the configuration space.

This work was partially supported by the Spanish Government through
the projects DPI2011-22471, DPI2013-40882-P and DPI2014-57757-R.
Muhayyuddin is supported by the Generalitat de Catalunya through the grant
FI-DGR 2014.

A new class of motion planning strategies, known as physics-
based, has recently emerged that focus not only on computing
collision-free trajectories, but also on considering the pur-
poseful manipulation of objects. Physics-based planning is an
extension to the kinodynamic motion planing that brings up the
interaction between rigid bodies in terms of considering their
dynamics [5]. Unlike what it is done in collision-free motion
planning, physics-based motion planning involves the complex
interaction between rigid bodies and manipulation actions to
achieve the desired goal [6], i.e. based on Newtonian physics
the behavior of the bodies resulting from physical interactions
is simulated and taken into account in the planning decisions.
These algorithms implicitly use the sampling based algorithms
for sampling the states. To evaluate the interaction between
rigid bodies, the state propagator uses dynamic simulators like
the Open Dynamic Engine (ODE [7]).

A physics-based motion planner has been proposed in [8]
that uses non-deterministic tactics and skills modeled using
a finite state machine (i.e. the rigid inter-body dynamical
simulations are performed using a physics-based state and
transition model). Their proposal is called Behavioral Kino-
dynamic Rapidly-exploring Random Trees and the Behavioral
Kinodynamic Balance Growth Trees. A different approach
proposed a physics-based temporal projection to provide, for
manipulation tasks, a reasoning capability on motion planning
parameters [9] (the study applied Bullet physics engine to
reason about stability, visibility, and reachability). Focused in
grasping, a physics-based grasp planner has been proposed
that computes the motions of the objects using a physics-based
pushing analysis [10]. It simultaneously contacts and moves
the obstacle in a controlled way for clearing the required path
(to make it computationally efficient the interactions of the
robot with the objects are precomputed). In a similar line, a
physics-based trajectory optimization approach is proposed in
[11] that samples the straight line trajectories and evaluates
the cost based on various parameters such as collision costs,
clutter behavior costs, and trajectory matching costs.

None of these referred works, however, takes advantage
of using reasoning on knowledge within the physics-based
motion planning procedures, although knowledge-based rep-
resentation techniques have usually been used as one of the
significant keys to model manipulation problems, i.e. the
integration of knowledge-based reasoning process with physics978-1-4673-7929-8/15/$31.00 c⃝ 2015 IEEE

Fig. 1: State transition process for ontological physics-based
planning.

engines still is an open research challenge for manipulation
problems, and this paper tries to contribute in this line. Regard-
ing knowledge representation and reasoning, the use of on-
tologies has emerged as a good way to describe manipulation
actions and to facilitate the reasoning process in manipulation
planning to provide inference capabilities from the abstract
knowledge [12], [13]. With this in mind, the main purpose
of this paper is to develop a framework where physics-based
motion planning is enhanced with ontological knowledge and
reasoning (about manipulation actions as well as about the
geometry of the objects), i.e. the inferred knowledge is to be
used to tune the physics-based motion planning. The proposed
ontological physics-based motion planner is called the smart
motion planner.

After this introduction the paper is structured as follows.
Section II describes the problem statement and the solution
overview, Sections III and IV present, respectively, the knowl-
edge representation and the reasoning, Section V presents the
framework, the planning algorithm, and the simulation results,
and finally Sections VI concludes the work.

II. PROBLEM STATEMENT AND SOLUTION OVERVIEW

A. Problem statement

Consider a motion planning problem where a robot must
move in an environment with obstacles that can be fixed or
manipulatable (i.e. obstacles that can be pushed away). Let Q
be the state space of the robot, qinit ∈ Q the initial state and
Qgoal ∈ Q the goal region. The robot must move from qinit
to qgoal ∈ Qgoal avoiding collisions with fixed obstacles and,
if necessary, pushing away manipulatable obstacles to clear
the way to find a solution path (for instance a manipulatable
obstacle may be placed at the goal region thus preventing a
collision-free path to exist).

B. Modelling

We consider a workspace composed of rigid bodies, that are
divided into two main categories, fixed bodies and manipulat-
able bodies. The former will remain static during the whole
planning process, even if collisions occurs with other manipu-
latable objects. On the contrary, the latter can be manipulated
during the planning. The manipulatable bodies are further
divided into free-manipulatable bodies and constraint-oriented
manipulatable bodies. Following the rigid body dynamics, the

free-manipulatable bodies can move in any direction when
collisions occur. On the contrary, constraint-oriented manipu-
latable bodies, have the allowable motion directions restrained,
i.e. they can only be moved if forces are applied in certain
directions.

The manipulation constraints are modeled by defining some
parts of the object from where the object can be pushed, and an
associated region for each one (called manipulatable regions)
where the robot must be located to exert the pushing forces.
For instance, the manipulation constraints for a car-like body
are defined by the forward and the backward directions as
the only allowable motions directions (i.e. the body will not
move if it receives a contact force on its lateral side). These
constraints are modelled by two parts (the rear and the front)
and their manipulatable regions.

At any time t the state s of each body is defined as:

s = {p, o, v, w, η}, (1)

where p represents the position of body, o the orientation, v
the linear velocity, w the angular velocity, and η describes the
manipulation constraints.

Also, in order to model the problem, the knowledge about
the task and the workspace is organized in two levels: a high
level knowledge representation called abstract knowledge K,
and a low level knowledge representation called instantiated
knowledge κt. The former codes the semantic-based knowl-
edge about the world, such as the type of bodies (i.e. fixed and
manipulatable) and other features like mass or the manipula-
tion constraints in case of constraint-oriented manipulatable
bodies. This knowledge remains unchanged throughout the
whole planning process. The latter, on the other hand, is
a dynamic knowledge, i.e. the instantiated knowledge infers
from the abstract knowledge and is continually updated by
making use of the reasoning process (detailed in Section IV).
For instance, if at a given instance of time the car-like
body has its front manipulatable region overlapping another
manipulatable object, then this region cannot be accessed by
the robot and the body cannot be pushed backward. In this
case the front manipulatable region is tagged as not valid in
the instantiated knowledge.

Then, the state of the world at any instant of time can be
described as the tuple (κt,qt), with κt being the instantiated
knowledge about the world at time t and qt the corresponding
states of the bodies:

qt = {s0, s1, ..., sn, t}, (2)

This state evolves with the state transition process depicted in
Fig. 1, that is composed of two modules, the physics engine
module and the instantiated knowledge module. Given the cur-
rent state (κt,qt) and the controls ut to be applied, the physics
engine module implements the dynamic state propagator that
computes qt+1 and the instantiated knowledge module is then
used to update the current instantiated knowledge:

qt+1 = f(qt,ut, κt) (3)
κt+1 = ξ(κt) (4)

This state transition process will be at the core of the physics-
based planners to be used, and will only return the state
whenever it is valid, i.e. the application of a control ut

that produces a non-allowable collision will not be accepted
(collisions are not allowed with fixed obstacles nor with
constraint-oriented manipulatable obstacles if the robot is not
located at one of the manipulatable regions).

C. Solution overview

The problem will be solved with a physics-based motion
planner enhanced with a knowledge-based reasoning process
that on the one hand modifies how manipulatable objects
behaves, and on the other modifies some parameters of the
planner. The key points regarding κt and the reasoning process
are:

• All fixed bodies are set as non-collisionable (the robot is
not allowed to collide with them).

• All free manipulatable bodies are set as collisionable.
• Any constraint-oriented manipulatable body is set as

collisionable if the robot is located at one of its manipu-
latable regions, otherwise it is set as non-collisionable.

• If the manipulatable region of a constraint-oriented ma-
nipulatable body is occupied, then this region is set as
not valid.

• If a constraint-oriented manipulatable bodies result with
no valid manipulatable regions, then the body is set as
fixed.

• If the state transition process results with a not-allowed
collision, then the new generated state is discarded by the
planner.

• If the goal region is occupied by a constraint-oriented
manipulatable body and the planner used has a sampling
bias, then this sampling-bias is randomly set to one of
the manipulatable regions of the body occupying the goal
region, with the aim of pushing it away.

III. ONTOLOGY-BASED MANIPULATION REPRESENTATION

Ontology models have recently been used to represent
robotic manipulation specifications, like manipulation actions
or object descriptions and their properties. These models give
robots the required knowledge to reason and to take better
decisions while planning.

A. Ontology overview

Ontology models organize knowledge within specific do-
mains. They enable a flexible access by defining things as
well as their relations. Ontologies are composed of five com-
ponents:

• Classes, also referred to as a concepts, describe types or
collections of objects that share common properties.

• Individuals, also called instances, represent specific ele-
ments of classes, e.g., people are individuals of a person
class.

• Properties express how classes and individuals are related
to one another, e.g., sibling relationship among people.

Fig. 2: Ontology-based manipulation classes.

• Attributes specify features, unique properties, and partic-
ular characteristics of objects, such as the age of a person.

• Axioms define constraints on the values of classes and
individuals.

Ontologies can be encoded using the Web Ontology Lan-
guage (OWL) [14]. OWL is intended to collect and orga-
nize ontology-based knowledge on a world-wide accessible
database in an XML-based file format in order that multiple
systems can use and share such knowledge.

Ontologies can be written using the Protégé editor [15].
Protégé is an open source platform providing an ontology
editor to develop knowledge-based applications. It, moreover,
can be used to portray the visualization of ontology in terms
of showing relations of classes or individuals as a graph.

B. Manipulation knowledge representation

For representing a manipulation problem, it is required to
specify actions, objects with their properties, initial and goal
states of a robot, and valid regions. In the present study, the
Protégé editor is employed to represent this knowledge in the
OWL. Six classes, derived from a general “Manipulation”
class have been defined (Fig. 2):

• Class “InitialState” contains the initial location of the
robot.

• Class “GoalState” contains the goal location of the robot.
• Class “Actions” contains different manipulation actions,

PickAction, PlaceAction, and PushAction, although only
the latter one will be used in the present paper.

• Class “Regions” defines different types of regions:
ManipulationRegion, ObjectRegion, and GoalRegion.
The ManipulationRegions are the regions around the
constrained-oriented manipulatable bodies from where
the interaction between the robot and the bodies are
allowed (these regions are currently defined as boxes),
i.e. the robot can only interact with the bodies through
the ManipulationRegions. ObjectRegion is the bounding

box of an object. The GoalRegion is a circular region
defined around the goal state.

• Class “ObjectsType” collects the types of objects in the
world: ManipulatableObject or FixedObject. If necessary,
the manipulatable status of an object can be temporary
changed to fixed by using the assertion process.

• Class “ObjectsElements” describes elements and features
of objects.

IV. KNOWLEDGE-BASED REASONING PROCESS

Robots can be made more autonomous to carry out their
complex tasks if some kind of reasoning process upon knowl-
edge is provided, instead of having a purely symbolic knowl-
edge representation. Reasoning on manipulation actions or on
robot geometries provides the possibility of understanding the
tasks in an analogous way a human does, e.g. of being able
to answer questions like “Which specific actions should be
selected for a given type of object?”, or “Do I need to move
some manipulatable objects to reach the goal?”.

A. Types of reasoning process

Two types of reasoning are proposed: reasoning about the
manipulation actions and about the geometry of the objects.
The aim of the reasoning about the manipulation actions is
to guide the motion planner to find an appropriate action in
accordance with the object type. As introduced before, objects
are classified into fixed and manipulatable, and those ma-
nipulatable are divided into constraint-oriented manipulatable
and free manipulatable. The type of object can be predefined,
although it can be identified by a reasoning process based on
the parts and features of the object and on the constraints they
define, since these constraints may restrict the movement of
the object. For instance, if when defining a car-like object the
body is attached with a wheel-drive, the allowable directions
of motion are automatically constrained along the plane of the
wheel and the pushing manipulation actions can then only be
exerted from some parts of the object (the front and the rear).
Also, some parameters like the size and the weight of objects
may constrain which actions can be selected according to the
capabilities of a robot.

The reasoning about the geometry of objects tackles two
matters. First, it determines whether the goal region is free
or occupied by other objects (using the bounding boxes of
the objects and of the goal region). Second, it determines
possible manipulation regions on the object (from where to
apply pushing forces). To address this, a reasoning process is
done by inferring over the properties of the objects.

B. Prolog-based knowledge inference process

The reasoning predicates have been defined in Prolog and
been integrated within Knowrob, a knowledge processing
framework for robotic systems [16]. Knowrob is a powerful
reasoning tool that works over ontology models: its implemen-
tation is based on SWI Prolog and the Semantic Web library,
enabling the use of Prolog predicates to fetch the knowledge

Fig. 3: Integration framework for ontological physics-based
motion planning

stored inside the OWL. Therefore, Knowrob provides a flexible
access to such knowledge to facilitate the reasoning process.

The following Prolog predicates have been implemented to
infer manipulation knowledge from the OWL and to reason
according to the states of the bodies.

• object classification(?Obj, ?ObjType, ?ManipType):
Given an object Obj returns its type (fixed or
manipulatable) in ObjType. In case of a manipulatable
objects, its type (free or constrained) is inferred from its
properties and returned in ManipType.

• action type(?Obj, ?ObjElement, ?Action): Given an ob-
ject Obj returns in ObjElement a list of elements (parts)
from where the object can be manipulated using the list
of actions returned in Action, e.g. for the car-like object
it will return the rear and the front as elements and push
as the manipulation action for both.

• determine goal region(?Obj): Returns in Obj the object
that is occupying the goal region if any, or null otherwise.

• valid region(?Obj, ?ObjElement, ?ValidRegion): Given
an object Obj and its part ObjElement returns in ValidRe-
gion whether the associated manipulatable region is valid
or not.

V. IMPLEMENTATION

A. Framework

The proposed framework, depicted in Fig. 3, is composed of
three main modules: the knowledge-based reasoning engine,
the communication layer, and the smart motion planner.

The knowledge-based reasoning engine has two main com-
ponents, the Abstract Knowledge which represents the whole
knowledge using an ontology model1, and the Reasoning
Module which infers ontological knowledge using Prolog
predicates integrated within Knowrob.

The smart motion planning module consists of the Instan-
tiated Knowledge module and the Planner module. The In-
stantiated Knowledge module contains the dynamic knowledge
that describes the temporary manipulation constraints (inferred
form the abstract knowledge based on the reasoning process),
that are updated at each instance of time and that describes
the way the bodies can be manipulated at a given particular
instance of time. The Planner module is composed of the The
Kautham Project [17], an open-source tool for motion planing,
developed in C++, that uses the Open Motion Planning Library
(OMPL) [18] as the core set of planning algorithms. OMPL
allows planning under geometric constraints as well as under
differential constraints, including those that required dynamic
simulations (OMPL uses the Open Dynamic Engine for the
dynamic simulation).

The role of the communication layer is to transfer informa-
tion between the other two layers. It includes ROS [19] and
Json-prolog (which is provided by Knowrob). The Json-prolog
library enables the access to Prolog predicates through the
ROS communication protocols, thus allowing to encapsulate
the knowledge-based reasoning process as a ROS service node
that can be called from a ROS client node containing the
motion planner. In this way, it is possible to integrate the
Prolog-based reasoning process within the motion planner.

B. Planning algorithm

Algorithm 1 Ontological Physics-Based Motion Planning.
Input: Initial state qinit, Goal region Qgoal ∈ C, Threshold Tmax

Output: A path from qinit to q ∈ Qgoal
1: ReadTheWorld()
2: K ← FormulateOntology()
3: while t < Tmax do
4: κ← KnowledgeReasoner(K,κ)
5: SelectNodeToExpand()
6: u← SampleControls()
7: qnew ← Propagate(u,κ)
8: if Valid(qnew) then
9: UpdateConnections()

10: if qnew ∈ Qgoal then
11: return Path(qnew)
12: end if
13: end if
14: end while
15: return NULL

The ontological physics-based planning procedure is
sketched in Algorithm 1. It takes as input the initial configu-
ration qinit, the goal region Qgoal and a time limit Tmax, and
returns a path from qinit to qgoal ∈ Qgoal, if found, or NULL
otherwise. The planning is performed by any of the OMPL
control planners, like RRT, KPIECE, or PDST [20], tuned to

1OWL files are accessible at: https://sir.upc.edu/projects/ontologies/.

use ODE as state propagator. The instantiated knowledge is
updated at each iteration and conditions the behavior of the
bodies in the ODE world.

The steps of the algorithm are the following:

• ReadTheWorld: Sets the initial state of the robot and the
environment by reading the p, o, v, w, and η of each
body.

• FormulateOntology: Extracts the abstract knowledge K
about the world, such as the type of the bodies, the
manipulation constraints and the geometrical positions
of bodies and determines whether the GoalRegion is
occupied or not. Further it computes the Manipulation-
Region for each constraint-oriented manipulatable object.
All these attributes are stored in the form of abstract
knowledge.

• KnowledgeReasoner: Evaluates the state of the world
and updates the instantiated knowledge κ. For instance,
if the GoalRegion is occupied by an object, then the
sampling of the planner will be biased towards one of the
ManipulationRegion of the object occupying it (instead
of the standard bias towards the goal). When the robot
enters in the ManipulationRegion, the standard bias is
reset and the instantiated knowledge is updated with the
manipulation constraints of that object.

• SelectNodeToExpand: Selects the node to expand the tree
data structure of the planner.

• SampleControls: Samples the controls within the given
range.

• Propagate: Applies the controls to the bodies (controls
can be applied by applying a force, a torque or by
setting a linear and angular velocity), while applying
the controls, the state propagator will take into account
the manipulation constraints provided by the instantiated
knowledge, and returns the new generated state.

• Valid: Returns true if no forbidden collision has occurred
during the generation of the new state, and false other-
wise.

• UpdateConnections: Updates the tree data structure by
adding the edge between the previous and the newly
generated state.

• Path(q): Returns a path from qinit to q ∈ Qgoal by
backtracking along the planner data strcuture.

C. Simulation Results

A simple scenario has been set in order to put the focus
on how the planner makes use of the knowledge to manage
a complex situation involving a manipulatable obstacle. It
consists of: a) the walls of a room which are defined as
fixed bodies; b) a spherical shaped robot with two degrees
of freedom; and c) a car-like obstacle which is defined as a
constraint-oriented manipulatable body that can only be moved
in the forward and backward directions. The goal region Qgoal

is occupied by the car-like obstacle, so no collision-free path
exists, i.e. the robot needs to push the car-like obstacle away
in order to reach Qgoal.

1

4

2

3

5 6

Fig. 4: Simulation results of the ontological physics-based
motion planner using KPIECE.

The knowledge-based reasoning engine reads the initial state
of the world and extracts the abstract knowledge related to the
world such as the type of bodies, the manipulation constraints,
and the state of the goal. Based on a reasoning process, the
instantiated knowledge is inferred from the abstract knowledge
and fills the data structures in the motion planning layer (such
as the current manipulation constraints, the valid manipulation
regions, the goal state - occupied or free -, etc.), that are
periodically updated. In this example, the knowledge-based
reasoning engine determines that the goal is occupied and
extracts the manipulation constraints associated to the car-like
obstacle (they have been defined as two ManipulationRegions
corresponding to its front and rear parts, since contact is
allowed with the front and the rear sides and is forbidden
with the two lateral sides).

The planning of paths has been performed using two dif-
ferent physics-based kinodynamic motion planners, KPIECE
and RRT. At each instance of time, the instantiated knowl-
edge evaluates the state of the world and the manipulation
constraints, changing the standard sampling bias towards the

1

4

2

3

5 6
Fig. 5: Simulation results of the ontological physics-based
motion planner using RRT.

goal by a bias towards one of the ManipulationRegions of the
car-like obstacle that occupies the GoalRegion. Once the robot
reaches the ManipulationRegion, the standard bias towards the
goal is restored. Fig. 4 and 5 show, respectively, sequences
of snapshots of the solutions found using KPIECE and RRT.
In both cases, it can be appreciated how the robot moves
towards one of the ManipulationRegions and then hits the
car-like obstacle at its front/rear side and pushes it to free
the GoalRegion and reach the goal.

Without using the aid provided by the instantiated knowl-
edge, these planners were not able to find good solutions, as
illustrated in Fig. 6. Since in this case the planner did not
know how to manipulate the car-like object, many tree edges
tried unfruitfully to grow towards the goal by hitting the car
at its side (in the solution shown the robot hits the car at the
wheel and bounces back). Therefore, the computational cost
was greater (it took approximately twice the time used by
the ontological physics-based planners, either with KPIECE
or RRT). The configuration spaces for all the above stated
executions are shown in Fig. 7.

1

43

5 6

2

Fig. 6: Simulation results using KPIECE without using instan-
tiated knowledge.

a b c

Fig. 7: Configuration spaces with the tree structures of the
planners used and the corresponding solution paths (in red):
a) KPIECE using instantiated knowledge; b) RRT using in-
stantiated knowledge; c) KPIECE without using instantiated
knowledge.

VI. CONCLUSIONS AND FUTURE WORK

The present study has explored the integration of
knowledge-based reasoning with physics-based motion plan-
ning. A framework has been presented to combine both phases,
aiming to enhance the planning process for manipulation
problems. Two types of reasoning (about manipulation actions
and about the geometry of objects) is considered. The result

of the inference process is stored inside the instantiated
knowledge and provided to the motion planning. The proposed
algorithm has been illustrated with a manipulation problem
where the goal region is occupied by a manipulatable obstacle
that should be removed by the robot using pushing actions.
The results described show that the proposed algorithm has a
better performance than the simple physics-based planning.

Future work will be directed towards the integration of
physics-based reasoning with a task planner, and the consider-
ation of other manipulation actions besides pushing, like pick
and place actions.

REFERENCES

[1] T. Lozano-Pérez, “Spatial Planning: A Configuration Space Approach.”
IEEE Trans. on Computers, vol. 32, no. 2, pp. 108–120, 1983.

[2] I. A. Şucan and L. E. Kavraki, “A sampling-based tree planner for
systems with complex dynamics,” IEEE Trans. on Robotics, vol. 28,
no. 1, pp. 116–131, 2012.

[3] S. M. Lavalle and J. J. Kuffner, “Rapidly-Exploring Random Trees:
Progress and Prospects,” B. R. Donald, K. M. Lynch, and D. Rus, Eds.
A K Peters, 2001, pp. 293–308.

[4] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning by
interior-exterior cell exploration,” in Algorithmic Foundation of Robotics
VIII. Springer, 2010, pp. 449–464.

[5] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” Journal of the ACM, vol. 40, no. 5, pp. 1048–1066, 1993.

[6] S. Zickler and M. M. Veloso, “Variable level-of-detail motion planning in
environments with poorly predictable bodies.” in Proc. of the European
Conf. on Artificial Intelligence Montpellier, 2010, pp. 189–194.

[7] S. Russell, “Open Dynamic Engine,” http://www.ode.org/, 2007.
[8] S. Zickler and M. Veloso, “Efficient physics-based planning: sampling

search via non-deterministic tactics and skills,” in Proc. of The 8th Int.
Conf. on Autonomous Agents and Multiagent Systems-Volume 1, 2009,
pp. 27–33.

[9] L. Mosenlechner and M. Beetz, “Fast temporal projection using accurate
physics-based geometric reasoning,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation, 2013, pp. 1821–1827.

[10] M. R. Dogar, K. Hsiao, M. Ciocarlie, and S. Srinivasa, “Physics-based
grasp planning through clutter,” in Robotics: Science and Systems, 2012.

[11] N. Kitaev, I. Mordatch, S. Patil, and P. Abbeel, “Physics-based trajectory
optimization for grasping in cluttered environments,” in Proc, of the
IEEE Int. Conf. on Robotics and Automation, 2015, pp. 3102 – 3109.

[12] S. Feyzabadi and S. Carpin, “Knowledge and data representation for
motion planning in dynamic environments,” in Robot Intelligence Tech-
nology and Applications 2. Springer, 2014, pp. 233–240.

[13] A. Akbari, Muhayyudin, and J. Rosell, “Task and motion planning using
physics-based reasoning,” in Proc. of the IEEE Int. Conf. on Emerging
Technologies and Factory Automation, 2015.

[14] G. Antoniou and F. van Harmelen, “Web Ontology Language: OWL,” in
Handbook on Ontologies in Information Systems, S. Staab and R. Studer,
Eds. Springer-Verlag, 2003, pp. 67–92.

[15] Stanford2007, “Protégé,” http://protege.stanford.edu/, 2007.
[16] M. Tenorth and M. Beetz, “Knowrob knowledge processing for au-

tonomous personal robots,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2009, pp. 4261–4266.

[17] J. Rosell, A. Pérez, A. Aliakbar, Muhayyuddin, L. Palomo, and
N. Garcı́a, “The kautham project: A teaching and research tool for
robot motion planning,” in Proc. of the IEEE Int. Conf. on Emerging
Technologies and Factory Automation, 2014.

[18] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, no. 4, pp. 72–82,
December.

[19] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, vol. 3, no. 3.2,
2009, p. 5.

[20] A. Ladd and L. Kavraki, “Fast tree-based exploration of state space
for robots with dynamics,” in Algorithmic Foundations of Robotics VI.
Springer, 2005, pp. 297–312.

