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Abstract The planning of collision-free paths for a
hand-arm robotic system is a difficult issue due to the

large number of degrees of freedom involved and the

cluttered environment usually encountered near grasp-

ing configurations. To cope with this problem, this pa-
per presents a novel importance sampling method based

on the use of Principal Component Analysis (PCA) to

enlarge the probability of finding collision-free samples

in these difficult regions of the Configuration Space with

low clearance. By using collision-free samples near the
goal, PCA is periodically applied in order to obtain a

sampling volume near the goal that better covers the

free space, improving the efficiency of sampling-based

path planning methods. The approach has been tested
with success on a hand-arm robotic system composed of

a four-finger anthropomorphic mechanical hand (17 joints

with 13 independent degrees of freedom) and an indus-

trial robot (6 independent degrees of freedom).

Keywords Importance sampling, Principal Com-

ponent Analysis, Anthropomorphic hands, Motion

planning, Grasping

1 Introduction

Robotics is continually broadening its field of appli-

cation, mainly towards service robotics, following ad-

vances in all of its disciplines. The improvement of ma-

nipulation capabilities is decisively contributing to this
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tendency. To this end hand-arm robotic systems are be-
ing developed not solely within the scope of humanoid

robotics but also for mobile manipulators. There are

anthropomorphic mechanical hands with a number of

degrees of freedom (dof ) ranging from 12 (four fingers
with 3 independent dof each one) to 25 (five fingers with

4 independent dof each one plus some dof in the palm)

(Bicchi, 2000; Biagiotti et al, 2004). Therefore, hand-

arm robotic systems are complex mechanisms with many

degrees of freedom, and the automatic determination of
their movements is difficult due to the high dimension-

ality of the corresponding Configuration Space (Cspace).

For this reason, several approaches were proposed to

reduce the dimensionality of the problem, in partic-
ular determining correlations between the movements

of the hand joints, to look for grasping configurations

(Santello et al, 1998; Ciocarlie and Allen, 2009), for the

path planning stage (topic discussed in detail below),

as well as in relation with their influence in the grasp-
ing forces (Gabiccini et al, 2011). Moreover, robustness

in front of uncertainty and sensory-motor coordination

issues is a topic that has also been considered for the ex-

ecution in real environments (Hsiao et al, 2011; Laschi
et al, 2008).

To cope with high-dimensional path planning prob-

lems, sampling-based approaches have been proposed.

These methods avoid the explicit characterization of

the Cspace, requiring only the collision evaluation of

a discrete set of sample configurations and their in-
terconnection with simple collision-free paths (Choset

et al, 2005). Despite its simplicity, these methods have

successfully solved many difficult problems involving

a large number of degrees of freedom, being its effi-
ciency tied to the capability of sampling those regions

of the Cspace relevant to the query to be solved, i.e.

the sampling procedure is a key factor of this kind
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of planners. Different importance sampling strategies

have been proposed towards this end (Geraerts and

Overmars, 2004; Hsu et al, 2006), like those that over-

sample the Cspace but quickly filter any non-promising

configuration, e.g. (Boor et al, 1999; Hsu et al, 2003),
or those that bias the sampling using the information

gathered during the construction of the roadmap or

tree, e.g. (Kavraki et al, 1996; Hsu et al, 2005). In or-

der to improve the performance of sampling-based plan-
ners, dimension-reduction techniques have also been pro-

posed, e.g. by using information provided by the user

or by the constraints of the task (Berenson et al, 2009;

Stilman, 2010), or by capturing the coupling that there

may exist between the degrees of freedom of the mech-
anism using Principal Component Analysis (Safonova

et al, 2004; Rosell et al, 2009).

Principal Component Analysis (PCA) has also been

used to bias sampling, as first proposed by Dalibard
and Laumond (2008) to accelerate the diffusion of a

Rapidly-exploring Random Tree (RRT) within a nar-

row passage. The approach modifies the traditional ex-

tension step of the RRT algorithm by applying the PCA
to a set of neighbors of the node to be extended, in this

way the direction of maximum variance of the growing

tree is obtained and it is then used to change the tra-

ditional isotropic sampling into a ellipsoidal sampling

that emphasizes the directions of maximum growing
of the tree. The approach locally estimates the direc-

tion of passages in order accelerate the diffusion within

them. These authors also proposed the use of PCA for

the expansion step of a Probabilistic RoadMap plan-
ner (PRM) (Dalibard and Laumond, 2011), i.e. they

selected nodes in difficult areas as proposed by Kavraki

et al (1996) and applied the PCA to its neighbor nodes

to expand it as done with the extension step of the RRT.

The use of PCA within a PRM was simultaneously pro-
posed by Rosell et al (2011a), to determine a sampling

region that attempts to tightly bound the free space

of a difficult area of the Cspace, like a narrow passage.

This approach does not require a PCA computation per
new sample, although it requires the specification of the

region where the narrow passage might approximately

lie.

Based on the approach of Rosell et al (2011a), the

present paper proposes a PCA-based PRM to plan the
motions of a hand-arm robotic system, in particular the

motions close to the final grasping configurations, where

the environment is usually cluttered and the solution

paths have low clearances. Besides this use of PCA to
bias samples, the planner proposed here also uses PCA

as a dimension-reduction technique to obtain human-

like motions (Suárez et al, 2009).

The paper is structured as follows. Sections 2 and 3

deal, respectively, with the PCAmethod as a dimension-

reduction technique and as an importance sampling

method, and Section 4 proposes a planner that incorpo-

rates both approaches for the planning of a hand-arm
robotic system composed of an industrial robot and an

anthropomorphic mechanical hand. Finally, Section 5

presents the conclusions of the work.

2 Principal Component Analysis

PCA is a statistical technique used to process a set of

vectorial samples in order to look for a new orthogo-
nal base of the vectorial space whose axis indicate, in a

decreasing order, the directions of the space with more

information to discriminate the samples, i.e. the disper-

sion of the samples is maximal along the first direction
of the new base and decreases along the remaining ones.

PCA is a common preprocessing step used to simplify

the problem in pattern recognition and classification

applications as well as in compression schemes and, in

the field of motion and path planning, it is frequently
used to reduce the dimension of the searching space and

therefore to decrease the running time of the planning

procedures.

There are different ways of performing the PCA

(Jolliffe, 2002). Basically, it can be done by comput-

ing the eigenvalue decomposition of a data covariance
matrix or the singular value decomposition of a data

matrix, usually after mean centering the data for each

attribute. The larger the eigenvalues or the singular val-

ues the larger the dispersion of the data along the cor-
responding eigenvector direction; the eigenvectors are

directly used to define the directions of the new base.

2.1 Dimension reduction using PCA

PCA is used to reduce the dimension n of the initial

space of samples, using instead a subspace of dimension

m < n defined by the first m directions of the new base
obtained with the PCA and neglecting the others. Fig. 1

shows a simple illustrative example of the use of PCA

to reduce the dimension of the space of samples C. The

grey dots represent samples in a 2-dimensional space

defined by the original variables x1 and x2 (which may
represent two real features of the problem). O′ repre-

sents the mean of the set of samples, so the samples

are first modified as x′ = x−O′. Then, using PCA, a

new base defined by x′

1 and x′

2 (which could be consid-
ered two virtual features) determines a new reference

system with the origin at O′. Now, since the dispersion

of the samples is larger along x′

1, the component x′

2 is
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Fig. 1: Illustration of the use of PCA as a dimension

reduction technique. The original 2-dimensional space
C is defined by x1 and x2, the mean of the set of samples

is O′, the direction with maximal dispersion of samples

is given by x′

1, and the new base is defined by x′

1 and x′

2.

Then, the new working subspace is defined by x′

1, and
the valid portion is constrained to the range [−λ1, λ1].

neglected, which is equivalent to consider the subspace

SC ⊂ C defined only by x′

1 as the working space in-
stead of C, so the dimension was reduced from 2 to 1.

Finally, a portion of SC defined by the range [−λ1, λ1],

such that it includes a desired percentage of the original

samples, is used for the generation of new samples.

2.2 Principal Motion Directions based on PCA and its

application in planning

The directions determined by the axis x′

i of the base

obtained with the PCA were called Principal Motion
Directions (PMDs) by Rosell et al (2009). Ordering the

PMDs according to the dispersion along the axis x′

i,

the range of motion along the first PMD is the largest,

and successively decreases for the rest. Therefore, al-

lowing movements along the first m ≪ n PMDs will
likely cover a significant portion of the valid Cspace.

Based on this, the PMDs were used in path planning

for a hand-arm systems as follows. First, the natural

workspace of a human operator’s hand is sampled us-
ing a sensorized glove, and these samples are mapped

to the configuration space of a mechanical hand making

the resulting postures as similar as possible to those of

the operator hand. Then, a PCA is performed in the

mechanical hand configuration space in order to ob-
tain the corresponding PMDs. Finally, for a given task,

a solution path is planned using a PRM in a Cspace

with reduced dimensionality obtained considering only

a reduced number of PMDs of the hand together with
the six degrees of freedom of the arm (since the ini-

tial and goal configurations may be outside the reduced

workspace they are specifically connected to the PRM).

0′

x1

x2

x3

x′

1 x′

2

x′

3

RS

VS

Fig. 2: Region RS and sampling volume VS obtained

using PCA for a three dimensional Cspace.

A variable number (increasing, starting from one) of
PMDs in the planning phase has been also considered

(Suárez et al, 2009; Rosell et al, 2011b).

The approach proposed in this work follows this line,
but, besides the dimension reduction, it proposes a new

original use of the PCA to improve the sampling phase

for the application of the PRM.

3 Importance Sampling based on Adaptive

Principal Component Analysis

3.1 The key idea

The key idea of using PCA in an importance sampling

method for a PRM is twofold: a) define a new basis

for the sampling space able to generate with a greater
probability collision-free configurations in difficult areas

of the Cspace (the whole new base is considered, i.e. no

reduction of dimensionality is pursued); and b) periodi-

cally recompute this basis as new collision-free configu-

rations are obtained, making the process adaptive and
obtaining a continuous improvement of the sampling

performance. The sampling procedure proposed is con-

ceived as a local method, i.e. it is applied to a region

of the Cspace where the area of interest is known to be
located (e.g. a region containing a narrow passage).

Let RS and VS be two regions defined as follows

(Fig. 2):

– RS : Region of the Cspace where importance sam-

pling is required.

– VS : Hyper-box aligned with the eigenvectors result-
ing from applying PCA to the collision-free samples

within RS , and with the size of each side propor-

tional to the corresponding eigenvalue.

Given a set of collision-free samples from RS , the

Principal Component Analysis is used to obtain VS .

Then, the sampling procedure samples configurations
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Algorithm 1 PCA-based Sampling

Require:
RS : region of Cspace
S: set of at least d collision-free samples from RS

kRS
: number of free configurations to sample from RS

kVS
: number of free configurations to sample from VS

Ensure:
S enlarged with up to kRS

+ kVS
new collision-free samples

VS=PCA(S)

SR = SAMPLE-FROM(RS , kRS
)

S = S ∪ SR

for i = 1 to kVS
do

s = SAMPLE-FROM(VS , 1)

if s ∈RS then
S = S ∪ s

end if
end for
return S

from both regionsRS and VS and stores them to update

VS in the next call to the algorithm. The reason behind
keeping the sampling in RS is the obtention of collision-

free configurations not included in VS that allow the

recomputation of VS to better cover the area of interest.

3.2 Procedure

Algorithm 1 describes the PCA-based sampling pro-

cedure. This is a variation of the algorithm proposed by

Rosell et al (2011a) that is simpler and guarantees the

obtention of collision-free configurations from both VS

and RS . It uses the following functions:

– SAMPLE-FROM(B, n): Returns n collision-free configu-

rations sampled from region B.

– PCA(S): Performs the Principal Component Analysis

over the samples of the set S and returns an hyper-

box aligned with the resulting new base, centered
at the mean value of S, and with the length of each

side proportional to the standard deviation of the

data along the corresponding axis.

Given an initial set S of at least d collision-free con-

figurations (d being the dimension of the Cspace) and
given a region RS , the sampling procedure computes

VS using PCA and then samples kRS
collision-free con-

figuration from RS and kVS
collision-free configuration

from VS . The algorithm returns the set S enlarged with

the new collision-free configurations that belong to RS

(note that VS may not be completely inside RS and

therefore some configurations sampled from VS may not

pertain to RS). Fig. 3 illustrates the sampling regions

RS and VS .
Region VS fits the difficult area of the Cspace better

than RS , like oriented bounding boxes (OBBs) fit ob-

ject volumes better than axis-aligned bounding boxes

Rs

Vs

Fig. 3: Examples of samples obtained from regions RS

and VS for a region with a narrow passage.

(AABBs) (Gottschalk et al, 1996). Therefore sampling

in VS may enlarge the probability of finding collision-

free samples in low-clearance difficult regions of Cspace.

It must be noted, however, that the approach may be-

come useless if the region VS results (approximately)
equal to the region RS , but this situation only happens

if the collision-free region has a (approximated) sym-

metric distribution inside RS and its bounding box is

similar to RS . In grasping tasks, like in many others,
this is a very improbable case, and, if for some particu-

lar application results VS ≡ RS then the approach will

run as a traditional regular PRM without any problem.

4 Application to the path planning of a

hand-arm system

This section proposes a PRM planner that uses the

PCA-based sampling method to solve path planning

problems for a hand-arm robotic system. The proposed

PRM is not conceived to capture the connectivity of the

whole free space of the Cspace, but solely the connec-
tivity of the part that is relevant to connect two given

configurations, cini and cgoal, being the later a grasp

configuration. In the following subsections, the Cspace

of the problem and the regions where samples are to be
obtained are defined; then the PRM is described and

evaluated with simulated and real experiments.

4.1 The Configuration Space of the problem

Let C be the Cspace of a hand-arm robotic system:

C = Ca × Ch (1)

where Ca and Ch are, respectively, the Cspaces of the
arm and of the mechanical hand. Using the Principal

Motion Directions described in Section 2.2, the path

planning will be done in a subspace SC defined as:

SC = Ca × SCh (2)
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where SCh is the H-dimensional subspace of Ch defined

by the first H PMDs. Then, if A is the dimension of

Ca, the planning will be done in a d-dimensional space

with:

d = A+H.

Therefore, a configuration c ∈ SC will be a d-dimensional

vector whose firstA components correspond to the joints

of the arm and whose last H components correspond to

the H PMDs used to determine the values of the hand

joints.

4.2 Sampling regions

This subsection defines the subregions of SC where to

obtain samples for the proposed PRM. Let:

– pos(c) be the function that returns the position co-

ordinates of the arm wrist when the hand-arm sys-
tem is located at configuration c,

– dist(p1, p2) be the function that computes the Eu-

clidean distance between two points p1, p2 ∈ R3,

– B be a region of SC defined as:

B(p, δ) = {c ∈ SC | dist(pos(c), p) ≤ δ}, (3)

with p ∈ R3 and δ being a given distance threshold,
– ConnComp(cgoal) be the set of configurations per-

taining to the connected component of the PRM

that contains cgoal.

Then, the following regions are defined:

– Region RS . Usually, the paths of a hand-arm system

to grasp an object have low clearances near the goal
grasp configuration. Therefore, it is near the goal

configuration where the PCA-based sampling pro-

posal better contributes to improve sampling-based

planners. For this reason, RS is defined as the re-

gion of SC containing the positions of the arm (i.e.
the x, y and z coordinates of the robot wrist) whose

distance from the position of the arm when it is lo-

cated at the goal grasp configuration cgoal is below

a given threshold δR, i.e.:

RS(δR) = B(pos(cgoal), δR) (4)

A practical value of δR is chosen approximately equal
to the finger lengths.

– Region VS . It is the region resulting from the PCA

applied to the set S of all collision-free hand-arm

configurations within RS that belong to the same
connected component than cgoal. VS is a hyper-box

of dimension d, aligned with the resulting new base,

centered at the mean value of S, and with the length

of each side equal to three times the standard devia-

tion of the data along the corresponding axis. Sam-

pling within VS results in hand-arm configurations

(θ1, . . . , θA, . . . , θA+H) ∈ SC.

– Region IS . In order to compute VS for the first time,
a set of at least d samples are required (i.e. a number

equal to the dimension of the Cspace). These are

obtained by sampling a region IS defined around

cgoal as:

IS(δI) = B(pos(cgoal), δI), (5)

with δI being a threshold smaller than δR (a practi-

cal value δI is around a third of δR). Sampling from
IS is done as follows:

– Arm configuration: The arm position is obtained

by sampling a sphere of radius δI centered at

pos(cgoal); the arm orientation is obtained by

sampling around the goal orientation (the ori-
entation is parameterized with three parameters

using quaternions (Kuffner, 2004), and these pa-

rameters are varied a small amount around the

values corresponding to cgoal). Afterwards, the
arm configuration (θ1, . . . , θA) ∈ Ca is obtained

using the inverse kinematics (if there are multi-

ple solutions the same arm configuration as in

cgoal is chosen).

– Hand configuration: The hand configuration
(θA+1, . . . , θA+H) ∈ SCh is obtained by sampling

each PMD in a predefined range around cgoal.

– Region MS . Samples further away from cgoal than

those of IS and VS are needed to construct the whole
roadmap to solve the query to connect cini and cgoal.

Also, collision-free samples outside VS are needed to

recompute VS to improve the coverage of the area of

interest. For these purposes, a region MS is defined

in a similar way as RS and IS , but centered at any
configuration of the connected component of cgoal
and with a variable distance threshold that ranges

from δI to the distance between the initial and the

goal arm positions, i.e.:

MS(δM ) = B(pos(ccg), δM ) (6)

with δI ≤ δM ≤ dist(pos(cini), pos(cgoal)) and

ccg ∈ ConnComp(cgoal). Sampling from MS is done

as follows:
– Arm configuration: The arm configuration is ob-

tained as done from IS , but slightly changing

the procedure for the arm position, which is ob-

tained by, first, randomly selecting a configura-
tion ccg of the connected component of cgoal, and

then sampling a sphere of radius δM centered at

pos(ccg).
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– Hand configuration: The hand configuration is

obtained by sampling each PMDwithin its whole

range.

4.3 PCA-based PRM

Algorithm 2 describes the proposed PRM that uses the
PCA-based sampling method to solve problems for a

real hand-arm robotic system; it is called PCA-based

PRM. The algorithm first obtains collision-free con-

figurations around the goal configuration by sampling
within IS , then it iteratively executes the following three

steps until the solution is found or a maximum number

of samples have been generated:

1. (Re)computes VS using the samples of the roadmap

within RS .

2. Samples from VS , adds the samples to the roadmap,

searches for a solution and exits if it is found.

3. Samples fromMS , adds the samples to the roadmap,
searches for a solution and exits if it is found.

Steps 2 and 3 are done by Algorithm 3, which use

the following functions:

– SAMPLE-FROM(B, n): Returns n collision-free configu-

rations sampled from region B, following the steps

described in the previous subsection for regions IS ,

VS and MS .

– PCA(S): Is the same function introduced in Section 3.2,
with the length of each side of the returned hyper-

box equal to three times the standard deviation of

the data along the corresponding axis.

– PRM-ADD(S): Builds a roadmap with the set of sam-
ples S.

– PRM-SOLVE(s): Adds the collision-free configuration s

to the roadmap and returns the path connecting the

initial to the goal configuration, if it exists, or the

empty-set otherwise.
– CONN-COMP(s, c): Returns true if s and c pertain to

the same connected component of the roadmap.

In order to explore the part of the Cspace relevant to

the query to be solved and to make emphasis around the
cluttered zone around cgoal, the parameter δM defining

the size of MS is not fixed, but it is initially set as δM =

δI and then it is incremented at each iteration in steps

δI (i.e. δM = δM + δI), restarting at δM = δI whenever

δM becomes greater than dist(pos(cini), pos(cgoal)).
The distance thresholds δR and δI depend on the

mechanical hand used. Therefore, the planner has only

two extra parameters to be defined by the user (the

number of samples kMS
and kVS

), besides the parame-
ters of a basic PRM like the maximum number of neigh-

bors per node and the neighbor distance threshold. The

best values of kMS
and kVS

are discussed in Section 4.5.

Algorithm 2 PCA-based PRM

Require:
cini: Initial configuration
cgoal: Goal configuration
d: Dimension of the Cspace
δI , δR: Distance thresholds
kMS

: number of free configurations to sample from MS

kVS
: number of free configurations to sample from VS

Ensure:
P : path connecting cini and cgoal

SPCA = SAMPLE-FROM(IS , d)

PRM-ADD(SPCA)

δM = δI
trials = 0
while trials < MaxTrials do

trials = trials+ kMS
+ kVS

VS=PCA(SPCA)

[P, SPCA] =Sample-and-Solve(cini,cgoal,VS ,kVS
,SPCA)

if P 6= ∅ then
return P

end if
[P, SPCA] =Sample-and-Solve(cini,cgoal,MS(δM),kMS

,SPCA)
if P 6= ∅ then

return P

end if
δM = δM + δI
if δM > dist(pos(cini), pos(cgoal)) then

δM = δI
end if

end while
return ∅

Algorithm 3 Sample-and-Solve

Require:
cini: Initial configuration
cgoal: Goal configuration
Q: Sampling region
kQ: Number of samples

SPCA: Set of samples
Ensure:

P : Path connecting cini and cgoal
SPCA: enlarged set of samples

for i = 1 to kQ do
s = SAMPLE-FROM(Q, 1)

P = PRM-SOLVE(s)

if P 6= ∅ then
return [P,SPCA]

end if
if s ∈RS and CONN-COMP(s, cgoal) then

SPCA = SPCA ∪ s

end if
end for
return [∅, SPCA]

4.4 Implementation

The proposed approach has been implemented as a spe-
cialized PRM planner inside the home-developed path

planning framework called The Kautham Project (Pérez

and Rosell, 2010). This tool was developed with the
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open-source and cross-platform directives in mind (Pérez

and Rosell, 2009), and it uses libraries such as Qt (Blan-

chette and Summerfield, 2006) for the user interface,

Coin3D (Kongsberg Oil & Gas Technologies, 2010) for

the graphical rendering and PQP (Larsen et al, 2000)
for the collision detection. This application provides the

developer with direct and inverse kinematic models of

the robots, and with samplers, metrics and other tools

needed for the development of planners.

With respect to the PCA-based PRM introduced

in the paper, there are several alternatives for its im-

plementation. One possibility is to use Octave (Eaton,

2002) or R (Foundation, 2011) together with a package
like the RCPP (Eddelbuettel, 2011) to connect them to

the application. However, since our application requires

to perform PCA within the sampling loop, the perfor-

mance criteria is considered a key factor, and for this

reason the Armadillo C++ Linear Algebra Library has
been used (Sanderson, 2010). This library is also open-

source and has a good performance in response time for

large volumes of data (Rosell et al, 2011a).

4.5 Application Examples

Some application examples are given here to illustrate

the ability of the proposed approach to find a solu-
tion path for a hand-arm robotic system moved to-

wards a low-clearance grasp configuration. The hand-

arm robotic system is composed of a TX90 Stäubli

robot (6 dof) and the Schunk Anthropomorphic Hand,

SAH (from which the first five PMDs have been se-
lected). Therefore the dimension of the planning sub-

space SC is d = 11. In the first example the hand must

grasp a thin T-shaped object and in the second one

the hand must grasp a given (yellow) can in a cluttered
environment. Fig. 4 and Fig. 5 show, respectively, an

instance of the solution for each these two tasks.

Fig. 6 show the success rate for these two examples

as a function of the values kMs
and kVs

, running 29 in-
stances for each combination of values and using a max-

imum number of samples of 2,000 in the first example

and 10,000 in the second one. It can be observed that

the best rates occur for a large ratio kVs
/kMs

, showing
the goodness of the proposal. In all the executions the

distance thresholds for the SAH hand have been set to

δR = 150 mm and δI = 50 mm.

The proposal has been compared with other impor-
tance sampling strategies:

– The Gaussian sampling strategy, that obtains con-
figurations near the obstacles (Boor et al, 1999).

– The Bridge-test sampling strategy, that obtains con-

figuration in narrow passages (Hsu et al, 2003).

Example Approach Samples Success
Rate

Time
(s)

T-object PCA 1, 240 100% 43.1
Gaussian 15, 740 76% 1558.3
Bridge-test 15, 586 79% 1627.8

Yellow can PCA 12, 307 100% 269.9
Gaussian 20, 778 85% 1264.0
Bridge-test 21, 595 76% 1245.5

Table 1: Performance evaluation comparison. Average
values for 72 executions of the tasks shown in Fig. 4

and 5 using different approaches (Samples refers to the

mean number of configurations that have been collision-

checked; Time is the mean time of the successful trials).

These methods have been chosen because they are a ref-
erence in many evaluations, e.g. (Hsu et al, 2005; Denny

and Amato, 2013), and comparative studies, e.g. (Ger-

aerts and Overmars, 2004; Hsu et al, 2006). In order

to make a fair comparison between these methods, the

Gaussian and the Bridge-test sampling methods have
been implemented within the main procedure given in

Algorithm 2, just substituting the sampling in VS by

the sampling in a region GS defined as:

GS(δI) = B(pos(ccg), δI) with ccg ∈ ConnComp(cgoal).

(7)

The sampling in GS is implemented as follows:

a) For the Gaussian sampling:

– Instantiate GS by randomly choosing a configura-

tion ccg ∈ ConnComp(cgoal).

– Obtain a sample s1 from GS as done from MS.

– Generate a random sample s2 at a distance from s1
chosen according to a normal distribution.

– Between s1 and s2 return the one that is not in

collision (if both are free or in collision then discard

them).

b) For the Bridge-test sampling:

– Instantiate GS by randomly choosing a configura-

tion ccg ∈ ConnComp(cgoal).

– Obtain two samples from GS as done from MS .

– If both are in collision then return the mid point
if it is a free configuration, otherwise discard all of

them.

The average performance results obtained are shown
in Table 1, using a maximum number of samples of

40,000 in both examples. The proposed method run

with kVs
= 10 and kMs

= 1 (i.e. a ratio 10:1), result-

ing a success rate of 100%, outperforming those of the
Gaussian and of the Bridge-test methods. Besides, the

number of samples required and the computational cost

were also significantly smaller.
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Fig. 4: Simulation of the plan to grasp the T-shape object.

Fig. 5: Simulation of the plan to reach the yellow can in a cluttered environment.
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Fig. 6: Success rate as a function of kMS
and kVS

for the T-object example (left) and for the yellow can example
(right). 29 instances of the problem were run for each combination of kMS

and kVS
in the range [1, 20].

Fig. 7 illustrates, both in simulation and in the real
environment, the solution path for a third example in

which the goal is also to grasp the yellow can in a clut-

tered environment. The accompanying video shows the

simulation and real execution of this task.

5 Conclusions

Principal Component Analysis has been previously used

in the scope of path planning to reduce the dimensional-

ity of the planning space. Within the scope of hand-arm

robotic systems, PCA is also used in this paper as an
importance sampling method, i.e. as a way to enlarge

the probability to obtain samples from those difficult

regions of the Configuration Space relevant to solve a

query. The search of a collision-free path to reach an
object to be grasped is a difficult issue due to the low

clearances that there exist near the goal grasp configu-

ration and the large number of degrees of freedom in-

volved. A probabilistic roadmap path planner that uses
the PCA-based sampling method near the goal grasp

configuration has been proposed and tested with suc-

cess on a hand-arm robotic system composed of a four-

finger anthropomorphic mechanical hand and an indus-

trial robot. As a future work we are planning to extend
the approach to consider uncertainty on the pose of the

object to be grasped, which may affect the free path of

the hand during the final movements for the grasping

operation.
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Fig. 7: Simulation and real execution of the plan to grasp the yellow can in a cluttered environment.
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