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Abstract: One of the main approaches to path planning problems is based on the use of
potential fields. Among them, the use of harmonic functions has given interesting results due to
its main feature of not having local minima. This paper first analyzes the properties of harmonic
functions for path planning and points out the flat region problem as its main disadvantage.
Then, to solve this problem, the paper proposes the use of sub- and super-harmonic functions
to obtain a better gradient. The method is first developed analytically using the Green function
on a 2 d.o.f. configuration space with simple obstacles. Then, a numerical solution using a
hierarchical discretization of the configuration space is proposed for its extension to more d.o.f.
and obstacles with complex shapes.

1. INTRODUCTION

The path planning problem in robotics consists in the
finding of a collision-free path for the robot from an
initial to a goal configuration among the obstacles in
the workspace. Path planning is usually done in the
robot configuration space C, where the robot is reduced
to a point and the obstacles are enlarged accordingly.
To avoid the explicit construction of the obstacles in C,
sampling-based approaches sample configurations of C and
capture the connectivity of the free regions by connecting
those that are collision-free (when possible) forming either
roadmaps [Kavraki and Latombe, 1994] or trees [Kuffner
and LaValle, 2000].

Other approaches, sometimes called feedback motion plan-
ning strategies [LaValle, 2006], focus on the situations
where the existence of a nominal solution path is not
enough to guarantee the successful performance of a task,
even if feedback control laws are used to follow it. Feedback
motion planning strategies assume that any unexpected
configuration can be achieved (i.e. implicitly consider un-
certainty) and therefore provide a feedback plan with the
proper action to be applied from any configuration to allow
the robot reaching the goal. These strategies are used for
example in mobile robotics [Prestes et al., 2002] or haptic
guidance [Rosell et al., 2008]. Feedback plans are usu-
ally defined using the gradient descent of potential func-
tions [Khatib, 1986], called navigation functions when they
have a single minimum at the goal configuration [Latombe,
1991, Yang and LaValle, 2004].

The combination of sampling-based methods with poten-
tial fields has been proposed either by using potential fields
to bias the samples towards difficult regions of C [Aarno
et al., 2004], or by using sampling methods to explore C
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to obtain a cell decomposition model where to compute a
potential field [Lingelbach, 2004, Rosell and Iñiguez, 2005].

Among the potential field approaches, those based on
harmonic functions are interesting because they give rise
to practical, resolution-complete planners without local
minima [Souccar et al., 1998]. An harmonic function φ
on a domain Ω ⊂ R

n is a function that satisfies Laplace’s
equation:

div (grad u) = 0 ⇒ ∇2u = 0 (1)

The solution of Laplace’s equation can be analytically
found for easy problems [Farlow, 1993]. For more com-
plex situations it is usually numerically computed. The
properties of harmonic functions from the path planning
perspective are the following:

1) Nonexistence of local minima: The main advantage of
harmonic functions for path planning is the nonexistence
of local minima in the domain. This determines that a path
planner based on harmonic function be complete, i.e. it will
found a solution if it exists. This property arises applying
the locality principle [DuChateau and Zachmann, 1986].
Considering for simplicity the case of a function in two
dimensions, of C2 class, and a circumference BR of radius
R and contour L with center at point r0 = (x0, y0). By
the locality principle, the value of u at this point is:

u0 = u(x0, y0) =
1

2πR

∮

L

u(x, y)dl −
R

4
div (grad u)

r0
,

(2)

where the first term is the mean value of the function in BR

and the second depends on the Laplacian of the function at
the central point and determines the change in the gradient
at that point with respect to the local domain BR. If the
Laplace equation is satisfied then:



Fig. 1. The minimum of a harmonic function is found in
the contour.

u(x0, y0) =
1

2πR

∮

L

u(x, y)dl, (3)

which determines that u(x0, y0) cannot be an extreme
value of u within BR. Since this is satisfied in all the points
of the whole domain, the minimum and maximum values
are always found in the boundary, as illustrated in Fig. 1.

2) Regularity of the solution: The curvature of the solution
streamlines obtained following the gradient of a harmonic
function is optimally smooth. This is an advantage when
robot dynamics must be taken into account to follow the
trajectory.

3) Stability of the solution: Small changes in the boundary
conditions imply small changes in the solution. This is
important (and essential in dynamic scenarios) since the
computational cost of updating the solution when changes
occur will be minimum.

4) Gradient of the solution: The main disadvantage of
using harmonic functions for path planning is the non-
uniform distribution of the gradient and the difficulty it
entails its following in those regions where it has very small
values (flat regions, Fig. 2). Consider a non-boundary
problem with a delta function located at the goal con-
figuration rd. Then, ∇2u = δ (rd), and applying the
divergence theorem in a hypersphere centered at rd results:

∮

S

∇u · dS =

∫

V

(∇ · ∇u) dV =

∫

V

δ (rd) dV = 1 (4)

This means that the flux of the gradient through any
surface enclosing the delta function is constant and equal
to 1 (Gauss theorem), and therefore the farther the surface
from rd, the smaller the gradient over its points. Consid-
ering the surface of a hypersphere and using the symmetry
of the model:

∇u =
1

Sn

r − rd

‖r − rd‖
, (5)

where Sn is the surface of a hypersphere of radius R, i.e.
Sn = nknRn−1, with n the dimension of the space and
kn = π, 4

3π, 1
2π2, . . . for n = 2, 3, 4, 5, . . .. If the radius

of the hypersphere is big and the dimension of the space
too, then the modulus of the gradient can be very small,

Fig. 2. The landscape of the harmonic function shows
the flat region problem encountered far form the goal
configuration rd where a delta function is located.

even below the computer precision, making the approach
useless.

2. PROPOSED APPROACH: ANALYTICAL
SOLUTION

In order to solve the flat region problem, this paper pro-
poses the use of sub-harmonic and super-harmonic func-
tions. Sub-harmonic functions are those functions that sat-
isfy ∇2u ≥ 0 on a given domain Ω and the super-harmonic
functions are those that satisfy ∇2u ≤ 0 [DuChateau and
Zachmann, 1986].

Considering for simplicity the case of a sub-harmonic
function in two dimensions u, with regularity C2, that
satisfies ∇2u = ρ with ρ ≥ 0, and a circumference BR of
radius R and contour L with center at point r0 = (x0, y0).
From (2):

u0 = u(x0, y0) =
1

2πR

∮

L

u(x, y)dl −
R

4
ρ(x0, y0) (6)

Therefore, being uMIN(L) and uMAX(L) the minimum and
maximum values of u at L:

uMIN(L)−
R

4
ρ(r0) < u0 < uMAX(L)−

R

4
ρ(r0),∀r0 ∈ Ω, (7)

which implies that the maximum of the function (over the
region BR) is found over its boundary while the minimum
is found over its boundary or in the interior (Fig. 3).

In a similar way for a super-harmonic function satisfying
∇2u = −ρ with ρ ≥ 0:

uMIN(L)+
R

4
ρ(r0) < u0 < uMAX(L)+

R

4
ρ(r0),∀r0 ∈ Ω, (8)

which implies that the minimum of the function (over the
region BR) is found over its boundary while the maximum
is found over its boundary or in the interior (Fig. 3).

Having in mind these properties, this paper proposes to
maintain a delta function at the goal configuration rd, as
usually done, and:



Fig. 3. Extremes of sub- and super-harmonic functions over
a local domain.

a) To model the surroundings of the goal configuration as
a region ΩP ⊂ Ω where u is sub-harmonic. Although a
sub-harmonic function can have local minima within
the region where it is defined, this won’t be the case
since ΩP surrounds the goal configuration where the
delta function forces the global minimum. And, as a
benefit, the existence of ΩP will shape u with a deep
valley around the goal configuration, increasing the
gradient of u in regions where, otherwise, it would
be too small for navigation purposes due to the flat
region problem.

b) To model the obstacles as a region ΩO ⊂ Ω where
the function u is super-harmonic. Treating the ob-
stacles as super-harmonic regions instead of borders
(with a boundary condition) of the domain where
a harmonic function is computed, as usually done,
makes the method more flexible for its combination
with sampling methods that explore the configuration
space [Rosell et al., 2008].

Then, the navigation function u at any point p ∈ Ω
satisfies:

∇2u = ρ + δ(rd), (9)

where:

ρ =

{

−ρO ∀p ∈ ΩO

ρP ∀p ∈ ΩP

0 ∀p 6∈ (ΩO ∪ ΩP )
(10)

being ρO ≥ 0 and ρP ≥ 0 constant values.

Now, applying the divergence theorem the following is
obtained:

∮

S

∇u · dS =

∫

V

∇2udV = 1 + (ρP VP − ρOVO), (11)

where VO and VP are, respectively, the volumes of the
obstacles (region ΩO) and of the region ΩP . Choosing
adequately the values of ρO and ρP , the flux of the
gradient can be properly balanced between the obstacle
“mountains” and the goal “valley”, obtaining a more
regular distribution all over the space.

Subsection 2.1 presents the procedure to analytical obtain
the solution of the navigation function u using the Green

function, and subsection 2.2 illustrates it with a simple
example.

2.1 Analysis using the Green function

The use of the first and second Green theorems allows
isolating the influence of the boundary conditions over the
potential function and its properties [Haberman, 1998].
The Green function on a domain Ω is defined as the
solution of the following equation:

∇2G = δ(r), (12)

being r any point in Ω and considering homogeneous
boundary conditions. Then, for the model ∇2u = ρ + δ(rd)
with non-null boundary conditions, the second Green the-
orem gives:

u(r) = g(r, rd) +

∫

V

ρGdV0 +

∮

S

(

u
∂G

∂n
− G

∂u

∂n

)

dS0,

(13)

where:

• g(r, rd) is the response to the delta function.

• The volume integral determines the influence of the
sub- and super-harmonic regions

• The surface integral represents the boundary condi-
tions of the workspace:

Dirichlet boundary condition: −
∮

S

(

u∂G
∂n

)

dS0

Neumann boundary condition:
∮

S

(

G ∂u
∂n

)

dS0

2.2 An example

Equation (13) has been programmed in Matlab for the
case of two-dimensional spaces with circular obstacles,
modelling region ΩO as a set of circular rings, one for each
obstacle, with ρ = −ρO, and region ΩP as a single ring
with ρ = ρP .

Figure 4a shows a particular example with two obstacles
(light blue rings) where the function is super-harmonic and
a goal configuration encircled by a circular ring (dark blue)
where the function is sub-harmonic.

The contribution to the solution of the different terms
of (13) is the following:

a) The contribution of the delta function located at the
goal configuration, shown in Fig. 4b.

b) The contribution of the circular rings where the
function is either sub- or super-harmonic, shown in
Fig. 4c.

c) The contribution of the boundary conditions is null,
since no boundary has been considered in this exam-
ple.

The global effect is shown in Fig. 4d, where it can be
seen that the consideration of sub- and super-harmonic
functions gives a better gradient, avoiding the flat region
problem that appear if only harmonic functions are con-
sidered.
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Fig. 4. a) Regions ΩO (light blue) and ΩP (dark blue); b) Response to the delta function located at the goal configuration;
c) Response due to the sub- and super-harmonic regions; d) Resulting navigation function.

3. PROPOSED APPROACH: NUMERICAL
SOLUTION

3.1 Solution over a regular cell decomposition

In order to obtain a numerical solution of a differential
equation the equivalent difference equation over a dis-
cretized space has to be solved using iterative methods.

Consider a uniform grid over a two-dimensional space.
Given u0, the value of u at the cell with center at
r0 = (x0, y0), the value of u at its neighbor cells can be
computed by Taylor as (Fig. 5):

u(x0 + h, y0) = u(x0, y0) +
1

1!

∂u

∂x

∣

∣

(x0,y0) h +
1

2!

∂2u

∂x2

∣

∣

(x0,y0) h
2

+ . . .

u(x0 − h, y0) = u(x0, y0) −
1

1!

∂u

∂x

∣

∣

(x0,y0) h +
1

2!

∂2u

∂x2

∣

∣

(x0,y0) h
2
− . . .

u(x0, y0 + h) = u(x0, y0) +
1

1!

∂u

∂y

∣

∣

(x0,y0) h +
1

2!

∂2u

∂y2

∣

∣

(x0,y0) h
2

+ . . .

u(x0, y0 − h) = u(x0, y0) −
1

1!

∂u

∂y

∣

∣

(x0,y0) h +
1

2!

∂2u

∂y2

∣

∣

(x0,y0) h
2
− . . .

(14)

Adding them gives:

4
∑

i=1

ui = 4u0 +
∞
∑

k=1

2h2k

2!
∇2ku0 (15)

The extension to n dimensions is:

2n
∑

i=1

ui = 2nu0 +
∞
∑

k=1

nh2k

2!
∇2ku0 (16)

From this, the value of u0 can be expressed as:

u0 =
1

2n

2n
∑

i=1

ui −
∞
∑

k=1

h2k

2 · 2!
∇2ku0 (17)

For harmonic functions it is satisfied that ∇2u = 0 and
∇2ku = 0 with k = 1, 2, 3, . . . . Therefore:

u0 =
1

2n

2n
∑

i=1

ui, (18)

which represents the mean value of the Manhattan neigh-
bors of the cell.

For sub- and super-harmonic functions, taking into ac-
count that ∇2u = ρ and ∇u · n = ∂u

∂n
the following is

obtained:



Fig. 5. Regular grid for the computation of u.

∇2ku =
∂2(k−1)ρ

∂n2(k−1)
k = 1, 2, 3, . . . (19)

And the value of u0 results:

u0 =
1

2n

2n
∑

i=1

ui −
1

2 · 2!

∞
∑

k=1

h2k ∂2(k−1)ρ

∂n2(k−1)

∣

∣

∣

∣

r0

(20)

Considering constant values of ρ, this expression can be
simplified to:

u0 =
1

2n

2n
∑

i=1

ui − Hρ(r0), (21)

with H = h2

2·2! and the expression of ρ given by (10).

The Jacobi relaxation method obtains u all over the grid,
by iteratively applying (21), i.e. being m the iteration step,
r the center of a general cell of the grid, and arbitrarily
setting H = 1:

um+1
r

=
1

2n

2n
∑

i=1

um
i − ρ(r) (22)

Other relaxation methods can be also used, like the Gauss-
Seidel or S.O.R..

3.2 Solution over a hierarchical cell decomposition

For path planning purposes the objective is to compute a
navigation function whose gradient descent leads to the
goal. This navigation function needs not be computed
over a fine regular grid, but for computational efficiency
purposes it can be computed over a hierarchical cell
decomposition (a 2n-tree) with big cells over uniform
regions of the configuration space.

The use of harmonic functions over a hierarchical cell
decomposition has been previously proposed by the au-
thors [Iñiguez and Rosell, 2003]. In the present approach
the method is extended to the computation of sub- and
super-harmonic functions.

Consider a 2n-tree decomposition of the configuration
space. The initial cell with sides with unitary size is

Fig. 6. Computation of u over a hierarchical cell decom-
position of the configuration space.

the tree root. The levels in the tree are called partition
levels (a cell of a given partition level m is called an
m-cell). Partition levels are enumerated such that the tree
root is the partition level 0 and the maximum resolution
corresponds to partition level M . Then, the value of u at
a given m-cell b0 is computed by modifying the first term
of (21). This term changes from a mean of the values of u
at the neighbor cells, to a weighted mean, i.e.:

u0 =
1

Nmax

N
∑

i=1

Wiui − ρ(r0), (23)

where:

• N is the actual number of neighbor cells.

• Nmax is the maximum number of neighbor M -cells
that an m-cell can have:

Nmax = 2n2(n−1)(M−m), (24)

n being the dimension of the space.

• Wi is the size of the border between two neighbor cells
measured in M -cells. If the partition level of the ith
neighbor is pi, then:

Wi = 2(n−1)(M−max(m−pi)) (25)

• ρ has the expression given in (10).

As an example, consider a two-dimensional configuration
space decomposed as a quadtree, like the one shown in
Fig. 6. Using (23), the value of u at cell b0 centered at r0

is:

u0 =
4u1 + 2u3 + u4 + u5 + u7 + u8 + 2u9 + 4u11

16
− ρ(r0)

(26)

Finally, the relaxation of u is obtained, using the Jacobi
method, by the following expression:

um+1
r

=
1

Nmax

N
∑

i=1

Wiu
m
i − ρ(r) (27)

3.3 A numerical example

Fig. 7 shows an example equivalent to the one shown
in Section 2.2. In this example the obstacles have a free
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Fig. 7. a) Hierarchical partition of the configuration space
with regions ΩO and ΩP ; b) Resulting numerical
navigation function; c) corresponding equipotential
lines.

form and wide open regions are modelled by big cells of
the hierarchical cell decomposition. The landscape of the
navigation function obtained demonstrates that the use of
sub- and super-harmonic functions gives a good gradient,
overcoming the flat region problem encountered when only
harmonic functions are used.

4. CONCLUSIONS AND DISCUSSION

Harmonic functions where initially proposed as a good
alternative to implement the potential field path planning
approach due to the absence of local minima. Nevertheless,
they have a drawback, namely the flat region problem
that makes that far away from the goal configuration
the gradient may be too small. The problem worsens for
increasing degrees of freedom and when using numerical
solution by means of relaxation methods. This may carry
practical problems that may advise against the use of
such a method. To recover from this problem, the paper

presented the used of sub- and super-harmonic functions
that allow to properly shape the navigation function. The
approach has been demonstrated analytically using the
Green function for simple scenarios (two-dimensional con-
figuration space with circular obstacles), and also using a
numerical solution computed over a hierarchical discretiza-
tion of the configuration space for its extension to more
complex scenarios.
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