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Abstract. Motion planning has evolved from coping with simply geometric prob-
lems to physics-based ones that incorporate the kinodynamic and the physical
constraints imposed by the robot and the physical world. Therefore, the crite-
ria for evaluating physics-based motion planners goes beyond the computational
complexity (e.g. in terms of planning time) usually used as a measure for evalu-
ating geometrical planners, in order to consider also the quality of the solution in
terms of dynamical parameters. This study proposes an evaluation criteria and an-
alyzes the performance of several kinodynamic planners, which are at the core of
physics-based motion planning, using different scenarios with fixed and manipu-
latable objects. RRT, EST, KPIECE and SyCLoP are used for the benchmarking.
The results show that KPIECE computes the time-optimal solution with heighest
success rate, whereas, SyCLoP compute the most power-optimal solution among
the planners used.

Keywords: Physics-based motion planning, Kinodynamic motion planning, Bench-
marking.

1 Introduction

Robotic manipulation requires precise motion planning and control to execute the tasks,
either for industrial robots, mobile manipulators, or humanoid robots. It is necessary to
determine the way of safely navigating the robot from the start to the goal state by satis-
fying the kinodynamic (geometric and differential) constraints, as well as to incorporate
the physics-based constraints imposed by possible contacts and by the dynamic proper-
ties of the world such as gravity and friction [1, 2]. These issues significantly increase
the computational complexity because certain collision-free geometric paths may not
be feasible in the presence of these constraints.

Physics-based motion planning has emerged, therefore, as a new class of planning
algorithms that considers the physics-based constraints along with the kinodynamical
constraints, i.e. it is an extension to the kinodynamic motion planning [3] that also
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involves the purposeful manipulation of the objects by considering the dynamical in-
teraction between rigid bodies. This interaction is simulated based on the principal of
basic Newtonian physics and the results of simulation are used for planning. The per-
formance of a physics-based planner largely depends on the choice of the kinodynamic
motion planner, that is implicitly used for sampling the states and the construction of the
solution path. The state propagation is performed using dynamic engines, like ODE [4],
that incorporates the kinodynamical and physics-based constraints.

Motion planning in its simplest form (i.e. as a geometric problem) is PSPACE-
complete [5]. The incorporation of kinodynamic constraints and the physics-based prop-
erties make it even more complex and computationally intensive, and for complex sys-
tems even the decidability of the physics-based planning problem is questionable [6].
Therefore, to make the physics-based planning computationally tractable, it is crucial
to use the most appropriate and computationally efficient kinodynamic planner. In pre-
viously proposed physics-based planning approaches, different kinodynamic motion
planners and physics engines have been used.

A few studies provided comparative analysis of the performance of some kinody-
namical motion planners within different physics-based planning frameworks. For in-
stance, the physics-based planning algorithm proposed in [7], that used nondeterminis-
tic tactics and skills to reduce the search space of physics-based planning, was evaluated
(in term of planning time and tree length) using two different kinodynamic motion plan-
ners, Behavioral Kinodynamic Rapidly-exploring Random Trees (BK-RRT [8]) and
Balanced Growth Trees (BGT [7]). The physics engine PhysX [9] was used as state
propagator. Another physics-based planning approach [10] integrated the sampling-
based motion planing with the discrete search using the workspace decomposition in
order to map the planning problem onto a graph searching problem. This work evalu-
ated the performance (in term of planning time) using RRT, Synergistic Combination
of Layers of Planning (SyCLoP [11]) and a modified version of the SyCLoP as kin-
odynamic motion planners. The propagation step was performed using the Bullet [12]
physics engine. A third approach proposed a physics-based motion planning framework
that used manipulation knowledge coded as an ontology [13]. This approach performed
a reasoning process over the knowledge to improve the computational efficiency and
has shown a significant improvement in performance (in term of planning time and
generated trajectory), as compared to the simple physics-based planning. Two kino-
dynamic motion planners were used, Kinodynamic Planning by Interior-Exterior Cell
Exploration (KPIECE [14]) and RRT. The Open Dynamics Engine (ODE) was used as
state propagator.

All the above stated studies basically measured the time complexity of different kin-
odynamic motion planners. Since physics-based planning simultaneously evaluates the
kinodynamical and the physics-based constraints, the evaluation based on just planning
time may not be sufficient. New evaluation criteria is required because a number of
other dynamical parameters (such as power consumed, action, smoothness) may signif-
icantly influence the planning decisions, like in the task planning approaches proposed
in [15, 16] that use a physics-based reasoning process to determine the feasibility of a
plan by evaluating the cost in terms of power consumed and the action. With this in
mind, the present study proposes a new benchmarking criteria for the physics-based
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planning that incorporates the dynamical properties of the system (to determine the
quality of the solution) as well as the computational complexity. It is used to compare
different kinodynamic motion planners (RRT, EST, KPIECE and SyCLoP) within the
physics-based planning framework presented in [13] based on a reasoning process over
ontological manipulation knowledge.

2 Kinodynamic Motion Planning

Motion planning problems deal with computing collision-free trajectories from a given
start to a goal state in the configuration space (C), the set of all possible configura-
tions of the robot [17]. The geometrically accessible region of C is called Cfree and
the obstacle region is known as Cobs. The sampling-based algorithms such as Proba-
bilistic RoadMaps [18] and the Rapidly-exploring Random Trees [19] have shown sig-
nificant performance when planning in high-dimensional configuration spaces. These
algorithms connect collision-free configurations with either a graph or a tree to capture
the connectivity of Cfree and find a path along these data structures to connect the initial
and the goal configurations.

Kinodynamic motion planning refers to the problems in which the motion of the
robot must simultaneously satisfy the kinematic constraints (such as joint limits and
obstacle avoidance) as well as some dynamic constraints (such as bounds on the ap-
plied forces, velocities and accelerations [20]). Tree-based planners are best suited to
take into account kynodynamic constraints [1], since the dynamic equations are used
to determine the resulting motions used to grow the tree. The general functionality of
sampling-based kinodynamic planners is to search a state space S of higher dimensions
that records the system’s dynamics. The state of a robot for a configuration q ∈ C is
defined as s = (q, q̇). To determine a solution, the planning will be performed in state
space, in a similar way as in C. This section briefly reviews the existing most commonly
used kinodynamic motion planners, that can be categorized into three classes: a) RRT
and EST belong to the class of planning algorithms that sample the states; b) KPIECE
belongs to the class that samples the motions or path segments; c) SyCLoP is an hybrid
planner that splits the planning problem into a discrete and a continuous layer.

Rapidly Exploring Random Trees (RRT): It is a sampling-based kinodynamic mo-
tion planning algorithm [21] that has the ability to efficiently explore the high dimen-
sional configuration spaces. The working mechanism of RRT-based algorithms is to
randomly grow a tree rooted at the start state (qstart ∈ C), until it finds a sample at the
goal state (qgoal ∈ C). The growth of the tree is based on two steps, selection and prop-
agation. In the first step a sample is randomly selected (qrand), and its nearest node in
the tree is then searched (qnear). The second step applies, from qnear, random controls
(that satisfy the constraints) during a certain amount of time. Among the configurations
reached, the one nearest to qnear is selected as qnew and an edge from qnear to qnew is
added to the tree. Using this procedure, all the paths on the tree will be feasible, i.e. by
construction they satisfy all the kinodynamic constraints.

Expansive-Spaces Tree planner (EST): This approach constructs a tree-shaped road-
map T in the state×time space [22] [23]. The idea is to select a milestone of T and
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from there randomly apply sampled controls for a certain amount of time. If the final
state is in free-space, it will be added as a milestone in T . The selection of the milestone
for expansion is done in a way that the resultant tree should neither be too dense nor
sparse. This kinodynamic planner works in three steps: milestone selection, control
selection and endgame connection. In the first step, a milestone m in T is selected with
probability inversely proportional to the number of neighboring milestones of m. In the
second step, controls are randomly sampled and applied from the selected milestone m.
Since by moving under kinodynamic constraints it may not be possible to reach exactly
the goal state, the endgame connection step is the final step that defines a region around
the goal in such a way that any milestone within this region is considered as the goal
state.

Kinodynamic Motion Planning by Interior-Exterior Cell Exploration (KPIECE):
This planner is particularly designed for complex dynamical systems. KPIECE grows
a tree of motions by applying randomly sampled controls for a randomly sampled time
duration from a tree node selected as follows. The state space is projected onto a lower-
dimensional space that is partitioned into cells in order to estimate the coverage. As a
result of this projection, each motion will be part of a cell, each cell being classified
as an interior or exterior cell depending on whether the neighboring cells are occupied
or not. Then, the selection of the cell is performed based on the importance parameter
that is computed based on: 1) the coverage (the cells that are less covered are preferred
over the others); 2) the selection (the cells that have been selected less number of times
are preferred); 3) the neighbors (the cells that have less neighbors are preferred); 4) the
selection time (recently selected cells are preferred); 5) the expansion (easily expanded
cells are preferred over the cells that expand slowly). The cell that has maximum impor-
tance will be selected. The process continues until the tree of motion reaches the goal
region.

Synergistic Combination of Layers of Planning (SyCLoP) This is a meta approach
that considers motion planning as a search problem in a hybrid space (of a continu-
ous and a discrete layer) for efficiently solving the problem under kinodynamical con-
straints. The continuous layer is represented by the state space (that is explored by a
sampling-based motion planner like RRT or EST) and the discrete layer is determined
by the decomposition of the workspace. The decomposition is used to compute a cost
parameter called lead that guides the motion planner towards the goal. SyCLoP works
based on the following steps: lead computation and region selection. The lead is com-
puted based on the coverage and the frequency of the selection. The former is obtained
by the sampling-based motion planner (continuous layer) and the latter is computed by
determining how many times a cell has been selected from discrete space. The selection
of the region will be performed based on the available free volume of the region (high
free volume regions are preferred for the exploration). The process continues until the
planner finds a sample in the goal region. SyCLoP will be recalled SyCLoP-RRT or
SyCLoP-EST based on the planner used in the continuous layer.
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2.1 Ontological Physics-Based Motion Planning

Physics-based motion planning is composed of a new class of planning algorithms that
basically go a step further towards physical realism, by also taking into account possi-
ble interactions between bodies and possible physics-based constraints (such as gravity
and friction that conditions the actions and its results). The search of collision-free tra-
jectories is not the final aim; now collisions with some objects may be allowed, i.e.
these algorithms also consider the manipulation actions (such as push action) in order
to compute the appropriate trajectory. The incorporation of the dynamic interaction (for
manipulation) between rigid bodies and other physics-based constraints increase the
dimensionality of the state space and the computational complexity. In some cases, par-
ticularly for the systems with complex dynamics, the problem may even be not tractable.

The ontological physics-based motion planning is a recently proposed approach that
tries to cope with aforementioned challenges [13]. This approach takes the advantage of
Prolog-based reasoning process over the knowledge of objects and manipulation actions
(this knowledge is represented in the form of an ontology). The reasoning process is
used to improve the computational efficiency and to make the manipulation problem
computationally tractable. It applies a hybrid approach consisting of two main layers
which are a knowledge-based reasoning layer and the motion planning layer.

The knowledge-based reasoning layer uses the manipulation ontology to derive a
knowledge, called abstract knowledge, that contains information of the objects and their
properties (such as their manipulatable regions, e.g. the regions from where an object
can be pushed), and the initial and goal states of the robot. The abstract knowledge,
moreover, categorizes the objects into fixed and manipulatable objects, being the manip-
ulatable objects further divided into freely and constraint-oriented manipulatable ones
(e.g. some objects can be pushed from any region while others may only be pushed from
some given region and in some predefined directions). Furthermore, abstract knowledge
also determines the geometrical positions of the objects to distinguish whether the goal
state is occupied or not.

The motion planning layer includes a reasoning process that infers from the abstract
knowledge. The inferred knowledge is called instantiated knowledge and is a dynamic
knowledge that is updated at each instance of time. Motion planning layer employs
a sampling-based kinodynamic motion planner (like KPIECE or RRT) and a physics
engine used as state propagator. After the propagation step, the new state is accepted
by the planner if all the bodies satisfy the manipulation constraints imposed by the
instantiated knowledge (e.g. a car-like object can only be pushed forward or backward
and therefore any state that results with a collision with its lateral sides is disallowed).
In this way the growing of the tree-like data structure of the planner is more efficient
since useless actions are pruned.

3 Benchmarking Parameters

A wide variety of the kinodynamic motion planners is available, the planning strategy
of these algorithms is conceptually different from one another, and this can significantly
affect the performance of the physics-based planning. A criteria is proposed to evaluate
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the performance of the kinodynamic motion planners for the physics-based planning. It
is suggested that, along with the computational complexity, it is also necessary to eval-
uate the dynamical parameters that determine the quality of the computed solution path.
This is determined by estimating the power consumed by the robot while moving along
the computed path, by the total amount of action (i.e. dynamic attribute of trajectory
explained later in this section) of the computed trajectory and by the smoothness of the
trajectory. The computational complexity is computed based on the planning time and
the average success rate of each planner. A planner is said to be most appropriate if it is
optimal according to the above said criteria.

The choice of physics engine (such as ODE, Bullet and PhysX) may not affect the
simulation results because the design philosophy of all of them is based on the basic
physics, and the performance and accuracy may vary a little but the simulation results
of all the physics engines are almost the same.

The following performance parameters have been established to evaluate different
kinodynamic motion planners within the framework of the ontological physics-based
motion planner. The trajectories given by the kinodynamic motion planners are de-
scribed by a list of forces and their duration that have to be consecutively applied to
move the robot (either in a collision-free way or possibly pushing some manipulatable
objects):

– Action: It is a dynamical property of a physical system, defined in the form of a
functional A that takes a sequence of moves that define a trajectory as input, and
returns a scalar number as output:

A =
n∑
i

|fi|∆tiεi, (1)

where fi, ∆ti and εi are, respectively, the applied control forces, their duration and
the resulting covered distances.

– Power consumed: The total amount of power consumed P by the robot to move
from start to the goal state is computed as:

P =

n∑
i

fidi

∆ti
, (2)

where fi, di and ∆ti are, respectively, the applied control forces, the resultant dis-
placement vectors and the time duration.

– Smoothness: The smoothness S of a trajectory can be measured as a function of
jerk [24], the time derivative of acceleration:

J (t) =
d a(t)

dt
. (3)

For a given trajectory τ the smoothness is defined as the sum of squared jerk
along τ :

S =

∫ tf

ti

J (t)2 dt, (4)

where ti and tf are the initial and final time, respectively.
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– Planning time: It is the total time consumed by the ontological physics-based plan-
ner to compute a solution trajectory.

– Success Rate: It is computed based on the number of successful runs.

4 Results and Discussion

In this section the results of benchmarking of kinodynamical motion planners for onto-
logical physics-based planning is presented. The benchmarking is performed using The
Kautham Project [25], a C++ based open source platform for motion planning that in-
cludes geometric, kinodynamic, and ontological physics-based motion planners. It uses
the planning algorithms offered by the Open Motion Planning Library (OMPL) [26], an
C++ based open source motion planning library, and ODE as state propagator for the
physics-based planning.

4.1 Simulation Setup

The simulation setup consists of a robot (green sphere), free manipulatable bodies (blue
cubes), constraint oriented manipulatable bodies (purple cubes), and the fixed bodies
(triangular prisms, walls, and floor). The benchmarking is performed with the three dif-
ferent scenes shown in Fig. 1, that are differentiated based on the degree of clutter. The
robot is depicted at its initial configuration, being the goal robot configuration painted
as a yellow circle. Fig. 1-a describes the simplest scene that consists of a robot, free
manipulatable bodies, and fixed bodies. The second scene, represented in Fig.1-b, con-
sists of a robot, free manipulatable bodies, fixed bodies, and a constraint-oriented body.
In this scene the narrow passage is occupied by the constraint-oriented manipulatable
body (it can only be pushed vertically, along y-axis) that has to be pushed away by the
robot in order to clear the path towards the goal. It is important to note that since there
is not any collision-free path available from the start to the goal state, the geometric
as well as the kinodynamic planners are not able to compute the path; only physics-
based planners has the ability to compute the path by pushing the object away. The final
scene is depicted in Fig. 1-c and has the highest degree of clutter. The goal is occu-
pied with a constraint-oriented manipulatable body (it can only be pushed horizontally,
along x-axis); in order to reach the goal region the robot needs to free it by pushing the
body away. As before, no collision-free path exists. The same planning parameters are
used for all the planners: goal bias equal to 0.05, sampling control range between -10N
and 10N, and propagation step size equal to 0.07s.

4.2 Benchmarking Results

The ontological physics-based motion planner is run 10 times for each scene and for
each of the kinodynamic motion planners summarized in Section 2. The average values
of the benchmarking parameters are presented in the form of histograms. Fig. 2 shows
as sequence of snapshots of a sample execution of the ontological physics-based motion
planner using KPIECE. In order to estimate the coverage of configuration space, and
the solution trajectory Fig. 3 depicts the configuration spaces and solution paths com-
puted by different kinodynamic planners. Fig.4 shows the average planning time (being
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a b c

Fig. 1: Simulation setup used for the benchmarking. The robot (green sphere) is depicted at the
start configuration while the yellow circle represents the goal.

1 2 3 4

5 6 7 8

9 10 11 12

Fig. 2: Sequence of snapshots of the execution using ontological physics-based motion planner.

the maximum allowed planning time set to 500 s). All the planners have been able to
compute the solution within the maximum range of planning time except EST. Among
all the planners KPIECE computed the solution most efficiently. The success rate of
the planners is described in Fig. 5. It is computed for each scene individually based on
the number of successful runs (i.e. how many times the planner computes the solution
within the maximum limit of time), then the average success rate of each planner is de-
termined by computing the average successful runs for the three scenes. Results show
that the KPIECE has the highest overall success rate. The SyCLoP-RRT also shows an
impressive success rate, whereas, EST has zero success rate.

The results of the dynamical parameters, action and power, are shown in Fig. 6 and
Fig. 7, respectively. Regarding action, the solution trajectory with minimum amount of
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a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

Fig. 3: Configuration space and solution path: each row corresponding to the scene, the columns
in each row (left to right) represents the configuration space and solution path using KPIECE,
RRT, SyCLoP-RRT, and SyCLoP-EST respectively.

action is considered as the most appropriate. Among the planners that computed the
solution within the given time, on average, KPIECE has the minimum amount of action
and SyCLoP-RRT has the maximum one. Regarding power, it is desirable that the robot
should consume a minimum amount of power while moving along the solution. Our
analysis shows that SyCLoP-RRT finds the power-optimal trajectory whereas KPIECE
is the worst. The results for RRT and SyCLoP-EST are almost the same. Regarding
trajectory smoothness, Fig. 8 shows the comparison. The SyCLoP-RRT computes the
most smooth trajectory among all the planners whereas, KPIECE show the worst results
in term of smoothness. Since EST was not able to compute the solution within the given
time, the action, power and smoothness for EST are set to infinity and not shown in the
histograms.

4.3 Discussion

We proposed a benchmarking criteria for physics-based planning. Based on the pro-
posed criteria, the performance of physics-based planning is evaluated using different
kinodynamic motion planners. Our analysis shows that in terms of planning time, suc-
cess rate and the action value, KPIECE is the most suitable planner. SyCLoP-RRT
shows significant results in terms of smoothness of the computed trajectory and power
consumed by the robot moving along the computed path. The planning time and suc-
cess rate for SyCLoP-RRT is also impressive. RRT shows average results throughout
the evaluation. SyCLoP-EST is good in terms of action value and power consumption
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Fig. 4: Average planning time (10 runs) for each scene and the overall averaged planning time
(three scenes).

Fig. 5: Success rate of the planners for each scene and the overall averaged success rate (three
scenes).

Fig. 6: Average amount of action for each scene and the overall averaged amount of action (three
scenes).

but the value of planning time is very high and it has a low success rate. The EST was
not able to compute the solution within time and has zero success rate.
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Fig. 7: Average power consumed by the robot while moving along the solution path and the
overall average (three scenes).

Fig. 8: Smoothness measure for each scene and the overall average (three scenes).

5 Conclusion and Future Work

This paper proposed an evaluation criteria for the physics-based motion planners. The
proposed benchmarking criteria computes dynamical parameters (such as power con-
sumed by the robot to move along the solution path) for the evaluation of the quality
of the computed solution path. Further, based on the proposed benchmarking criteria,
the performance of the ontological physics-based motion planner (using different kin-
odynamic motion planners) is evaluated and the computed properties of the each kin-
odynamic motion planner are discussed in detail. For now the evaluation criteria was
implemented on simple scenes and with the push action as the sole manipulation action;
as future work the proposed benchmarking criteria will be implemented for mobile ma-
nipulators to also benchmark the grasping and pick and place manipulation actions.
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