
Knowledge-oriented Physics-based Motion
Planning for Grasping under Uncertainty

Muhayyuddin, Aliakbar Akbari and Jan Rosell?

Institute of Industrial and Control Engineering,
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Abstract. Grasping an object in unstructured and uncertain environments is a
challenging task, particularly when a collision-free trajectory does not exits. High-
level knowledge and reasoning processes, as well as the allowing of interaction
between objects, can enhance the planning efficiency in such environments. In
this direction, this study proposes a knowledge-oriented physics-based motion
planning approach for a hand-arm system that uses a high-level knowledge-based
reasoning to partition the workspace into regions to both guide the planner and
reason about the result of the dynamical interactions between rigid bodies. The
proposed planner is a kinodynamic RRT that uses a region-biased state sampling
strategy and a smart validity checker that takes into account uncertainty in the
pose of the objects. Complex dynamical interactions along with possible physics-
based constraints such as friction and gravity are handled by a physics engine that
is used as the RRT state propagator. The proposal is validated for different scenar-
ios in simulation and in a real environment using a 7-degree-of-freedom KUKA
Lightweight robot equipped with a two-finger gripper. The results show a signifi-
cant improvement in the success rate of the execution of the computed plan in the
presence of object pose uncertainty.

1 Introduction

Recent advancements in robotics allow robots to perform challenging tasks in complex
environments. Most of the manipulation tasks, such as setting the table, require the abil-
ity to execute stable grasps through sequences of grasping actions. Grasp planning has
been studied extensively since the past few decades [1–3]. The traditional approaches
for grasping an object are object-centric. These approaches determine the contact points
on the target object in such a way that, if fingers are placed on these points, stable grasps
are guaranteed. Afterward, a motion planner (such as PRM [4] or RRT [5]) is launched
to determine the collision-free trajectory to move the hand towards the grasping pose.
It is desirable for stable grasps that fingers make contact with the object simultaneously
and avoiding collisions with other objects in the environment. Otherwise, the target
object may be displaced from its location, resulting in an unsuccessful grasp.
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These approaches work well in a structured or semi-structured environment where
objects are not too close to each other. However, unstructured and uncertain envi-
ronments (generally referred as clutter) pose serious challenges, especially when a
collision-free trajectory does not exist. Grasping in such environments requires a rich
semantic knowledge of the scene and the allowing of robot-object and object-object
interactions. That is, to clear the path towards the target object, the robot must have
the ability to reason about the consequences of each complex dynamical interaction in
order to avoid objects falling from the table/shelf or displacing the target object, thus
preventing the successful execution of the task.

This paper aims to contribute in this line by proposing a knowledge-oriented physics-
based motion planning approach for grasping in the clutter. The approach also handles
the uncertainty in the pose of the objects, which is a key issue to be considered when
dynamic interactions occur, and that is important to be taken into account during plan-
ning. In this sense, for instance, the work in [6] handled the uncertainty caused by the
robot-object interactions (i.e. no object-object interactions were allowed), by analysing
them considering linear motions of the gripper and the quasi static assumption (i.e. the
interaction forces are small enough to avoid the effect of inertial forces). The proposal
presented here is based on a randomized kinodynamic motion planner with a dynamic
engine as state propagator that allows to consider any type of motion (not only rectilin-
ear motions of the gripper) and any type of interaction (robot-object and object-object).
The planner includes a high-level knowledge about the scene, stored in the form of on-
tologies, that is used to provide a semantic description of the scene and information on
how the robot may interact with the obstacles. Moreover, a smart state-validity checker
is introduced that evaluates the post-effect of dynamic interactions and computes a con-
fidence index that provides the belief about the robustness of the selected controls in
the presence of uncertainty.

The rest of the paper is structured as follows. First, Sec. 2 introduces some related
work and Sec. 3 formulates the problem. Then, the proposed approach is explained in
Sec. 4, that details the reasoning process, the uncertainty handling and the sampling-
based kinodynamic motion planner. The implementation and the simulation setup is
sketched in Sec. 5, together with the results and discussion. Finally, the conclusions are
summarized in Sec. 6.

2 Related Work

The approaches for grasping in cluttered environments can be categorized into recon-
figuration planning and physics-based grasp planning. Reconfiguration planning ap-
proaches clear the way toward the target object by moving the objects away [7–9].
These approaches are still object-centric; in each action (either push or grasp) the focus
is on moving a particular object while avoiding the interaction with the rest of the envi-
ronment. These approaches may not work well in complex environments. On the other
hand, physics-based grasp planning are clutter-centric; they allow the robot to make
contact with the objects and manipulate them in a controlled way for clearing the path
towards the target object.



These approaches, that have emerged recently, incorporate the physics-based sim-
ulation to evaluate the effect of the dynamic interactions between the robot and the
objects in the environment. In this line, some works like [6, 10] perform the physics-
based simulation using push mechanics considering the quasi-static assumption. These
approaches sample straight line motions for the hand, using precomputed interactions
of the robot with each object in an isolated environment (no object-object interactions
are considered). The straight line motion that ends with a successful grasp is selected
as a solution. Finally, the inverse kinematics is solved to move the arm on the com-
puted path. In a similar line [11] proposes a grasp trajectory optimization approach for
the hand-arm system. Rather than the pre-determining quasi-static interactions it uses
a dynamic engine (Bullet Physics Library [12]). This approach also plans straight line
motions.

The need to consider uncertainty in motion planning arises by the imprecise knowl-
edge of the robot dynamic model and of the initial state, that may condition the suc-
cess of the task execution. In this line, some approaches, such as [13–15] introduce a
stochastic parameter (with zero mean Gaussian distribution) in the robot model that is
used for the step propagation of an RRT-based algorithm, as well as a Gaussian dis-
tribution around the measured initial state. Other approaches focus on the uncertainty
in dynamic environments [16], or in the environment parameters like friction [17]. It
has to be noted that the focus of all the above mentioned approaches is to compute
collision-free paths and therefore no interactions are considered. On the contrary, the
approach in [6] considers object pose uncertainty to compute the region formed by the
set of target object poses that result into stable grasps, and uses it to plan linear motions
to grasp the target object, allowing quasi-static interactions of the end-effector with the
objects.

To make planning more efficient, the use of knowledge to reason on manipulation
actions and enhance physics-based motion planning was proposed in [18] for mobile
robots, where it was coded as ontologies that stored a high-level description of the scene
(in terms of properties of the robot, the objects and the manipulation constraints. Fol-
lowing this approach the present proposal extends it by considering robot manipulators,
the reasoning on the effects of dynamic interactions (both robot-object and object-object
interactions), and the presence of uncertainty.

3 Problem Formulation

Consider a hand-arm trajectory planning problem to grasp a target object in an uncer-
tain and unstructured environment. The environment E is composed of a robot R and
a set of objects O lying on an horizontal flat surface. The robot consists of a set of
n links described as {L1 . . .Ln}. Let X represent the state space of the robot, it is a
differential manifold. The state x ∈ X of the robot at any time t can be represented
as x(t) = {L1(q1, q̇1), . . . ,Ln(qn, q̇n)}, where qi and q̇i represent the angle and the
angular velocity of the i-th joint, respectively. The objects in the environment are classi-
fied into a set of fixed objects Of and a set of manipulatable objects Om, that includes
the target object Omtarget. The robot is only allowed to interact with the manipulatable
objects. Then, objects are represented as O = {Om1 . . .Omj ,O

f
1 . . .O

f
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represent the number of manipulatable and fixed objects, respectively. Let S be the state
space of the objects in the environment. Then, at any time t, the state of the objects can
be parametrized as s(t)={s1, . . . , sj+k} where si ∈ S has a component pi represent-
ing the pose, and another one vi representing the linear and angular velocities of each
object at time t. The state of the environment is then described as E = X × S , and the
dynamic state propagator f is defined as;

f : Ei × U −→ Ei+1 (1)

Where, U is the control space containing all possible controls that can be applied to the
system. In this work, controls will be represented in terms of joint velocities.

Consider a situation where the path to reach the target object is blocked with one
or several objects in such a way that a collision-free trajectory from the start to a goal
configuration does not exist. Then, the objective is to plan the grasp approach trajectory
by computing the sequence of controls and corresponding duration in such a way that if
sequentially applied to the robot (in the presence of object pose uncertainty), it moves
the robot from the start to the (pre-grasping) goal state.

Uncertainty in the knowledge of the actual initial poses due to the sensory noise will
be considered. The pose uncertainty region will be modelled as UEinit = N (pinit,ν init),
i.e. a multivariate Gaussian distribution with mean pinit = (pinit

1 , . . . ,pinit
j+k), the mea-

sured initial pose, and variance ν init = (ν init
1 , . . . , ν init

j+k). The uncertainty will be prop-
agated to future states as a result of robot-object and object-object interactions. Then,
the controls to be selected will be those that, when applied to any actual pose within the
pose uncertainty region, are robust enough to bring the system to a new valid state, with
a probability higher than a given threshold.

4 The Proposed Approach

The proposed approach works in two main phases that are the pre-processing phase and
the planning phase. The former involves a knowledge-based representation of the envi-
ronment to provide the semantic description of the scene and a reasoning process that
partitions the workspace into regions, define manipulation constraints for the objects,
and provides the detailed insight about the task. The latter consists of a sampling-based
kinodynamic motion planner that uses the high-level description of the problem (com-
puted in the pre-processing phase) to plan efficiently. Moreover, it proposes a strategy
to cope with object pose uncertainty. The integration of these two phases enables the
robot to plan robustly in complex environments.

4.1 Reasoning Process

To model and represent semantic knowledge, an ontology-based approach is used. On-
tologies can mainly collect and categorize different sort of knowledge within various
classes embracing a collection of objects, individuals being instances of classes. They
can be encoded with the Ontology Web Language (OWL) [19] to allow the sharing of
the knowledge over the world wide web. Accordingly, knowledge regarding the robot
as well as obstacles properties is stored in two classes using OWL (Fig. 1):



Fig. 1: OWL semantic knowledge taxonomy.

Algorithm 1 ReasoningProcess(Ks,Omtarget, Einit)

1: Km ← ∅
2: TRgn←compute target region(Omtarget, Einit)
3: {OmTRgn}←objects in target region(TRgn)
4: {mRgn}←compute manipulation regions(Ks)
5: return Km.add(TRgn, {OmTRgn}, {mRgn})

– Robot properties: It includes the robot kinematic properties (such as joint limits and
collision model) and dynamic properties (such as masses and bounds on forces and
velocities), as well as the properties of the gripper.

– Obstacles Properties: It involves properties of obstacles such as the poses of fixed
and manipulatable objects, their masses, friction coefficients, and manipulation
constraints (represented in terms of manipulation regions).

The reasoning process, summarized in Algorithm 1, is performed over this semantic
knowledge, called Ks, in order to specify the target region as well as the manipulation
region for each of the manipulatable objects. The target region is determined as a box
region around Omtarget, and it is considered as the part of the workspace where efforts
to find a robust plan are focused. The manipulation regions (mRgn) are defined as the
regions around the manipulatable objects from where the robot can interact with the
obstacles (in this respect, for instance, these regions will be located below the center
of mass for tall and thin objects). This spatial reasoning process is carried out over the
knowledge ontologies using the Prolog language, with the following predicates:

– compute target region: GivenOmtarget andEinit, it computes the location of the target
object and applies spatial reasoning to compute the target region (TRgn). It will be
modeled as a box centered at the target object with the size of the sides depending
on the robot and the objects.

– objects in target region: Given a TRgn, it returns the set OmTRgn of manipulatable
objects it contains (includingOmtarget). Uncertainty will be considered only forOmTRgn.

– compute manipulation region: It takes the semantic knowledge Ks as input and
defines the manipulation regions based on the properties of the objects.

The output of the reasoning process is encapsulated as the manipulation knowledge Km
that will be used by the motion planner for computing the plan.
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Fig. 2: (a) Initial pose uncertainty of three objects; (b) Pose uncertainty of the target
object assumed to fit within the gripper aperture; (c) Enlarging of the pose uncertainty
of an object being displaced due to the results of interactions.

4.2 Handling Pose Uncertainty

This section describes: 1) the evaluation of the outcomes of dynamic interactions done
by the validity checker taking into account uncertainty, 2) the strategy to define the ro-
bustness of controls according to a set of possible resultant states, and 3) the propagation
of the uncertainty into the future states as a result of the dynamic interactions.

The initial pose uncertaintyUEinit is propagated due to dynamic interactions, i.e. the
mean and the deviation vary due to the objects that are moved due to interactions. As an
example, Fig. 2-a shows the initial pose uncertainty of three objects (as the projection of
UEinit onto the corresponding xy-planes), Fig. 2-c the enlarging of the pose uncertainty
as the object is displaced due to an interaction, and Fig. 2-b the pose uncertainty of the
target object (it is assumed that the gripper aperture is big enough to envelope it, and
this will always hold since no interaction with the target object are permitted).

State validity checker The proposed state-validity checker allows the collision with
manipulatable objects, while rejects the collision with fixed objects. The result of an
interaction with a manipulatable object will be valid, however, only if the interaction
takes place when the robot gripper is located at the object manipulation region, the
velocity at the contact is below a given threshold (to prevent unwanted large motions of
the objects), and no object collide with the target object or falls from the table.

Control Evaluation The effects of applying a given control when interactions occur
depend on many factors, like friction, pressure distributions under the object surface,
momentum and inertial effects, as well as on the actual pose of the objects (within the
uncertainty region) when the control is applied. Therefore, the use of the state propaga-
tor dynamics engine is proposed to evaluate its eligibility when applied to a given state
Enear. The procedure, sketched in Algorithm 2, relies on applying the control (during
a given time duration) from a set of n states sampled from the uncertainty region as-
sociated to Enear, and evaluating the validity of the resulting states. The probability of
obtaining a valid resultant state is estimated by the ratio of valid resultant states w.r.t.
the total, and is called confidence index. The main functions used in Algorithm 2 are:

– SampleState: Varies the poses of the objects of a given nominal state Enear by sam-
pling them from the corresponding pose uncertainty regionUEnear = N (pnear,νnear),
and returns the resultant state, called Etrial.



Fig. 3: The robustness evaluation of the selected controls, n controls will be randomly
sampled from Enear. The valid resultant states are represented with green color whereas
invalid with the red.

Algorithm 2 ConfidenceIndex(UEnear , u∆t,Km)
1: Enear ← ∅, Enew ← ∅, validstatecounter = 0
2: for i = 0 to n do
3: E trial

near ← SampleState(UEnear )
4: E trial

new ← Propagate(E trial
near, u∆t)

5: if StateValidityChecker(Enew
trial ,Km) then

6: validstatecounter = validstatecounter + 1
7: Enear.Add(E trial

near)
8: Enew.Add(E trial

new)
9: end if

10: end for
11: c = validstatecounter/n
12: return {c, Enear, Enew}

– Propagate: Returns a new state Enew
trial by applying Eq. (1) to state Etrial using ODE

as state propagator, which takes care of all the kinodynamic and physics-based
constraints.

– StateValidityChecker: Checks the validity of the new stateEnew
trial as described above.

The set of valid states and confidence index are returned for further processing.

Uncertainty region update The uncertainty region is updated upon the occurrence of
robot-object or object-object interactions, as sketched in Algorithm 3. The following
functions are used:

– displacedObjects: Evaluates for the states in the set Enew if the objects poses differ
from the corresponding in Enear, and returns the number of times this is true.

– ComputeMeanPose: Computes for each object i the mean pose pnew
i , from the pose

p
Ej

i of each state Ej ∈ Enew, i.e.:

pnew = (pnew
1 , . . . ,pnew

j+k) with pnew
i =

1

|Enew|
∑

∀Ej∈Enew

p
Ej

i (2)



Algorithm 3 UpdateUncertaintyRegion( Enear, Enew, UEnear )
1: if displacedObjects(Enear, Enew) != NULL then
2: pnew ← ComputeMeanPose(Enew)
3: νnew ← ComputeDeviation(Enew,p

new)
4: return N (pnew,νnew)
5: end if
6: return UEnear

– ComputeDeviation: Computes for each object i the deviation of the poses of the
object for the states in Enew, i.e.:

νnew = (νnew
1 , . . . , νnew

j+k) with νnew
i =

√√√√ 1

|Enew|
∑

∀Ej∈Enew

[p
Ej

i − pnew
i ]2 (3)

Note that the uncertainty region is only updated when interactions occur.

4.3 Kinodynamic Motion Planner

For planning the trajectory, an RRT planner is used. It is a sampling-based kinodynamic
motion planner that efficiently explores high-dimensional state spaces [20] by growing
a tree rooted at a start state. For the growth, a state xrand is randomly sampled, and the
node of the tree that is nearest to xrand is selected as xnear. From that state, randomly
sampled controls are applied for a randomly sampled time duration, and the validity-
check is run at each step to find collision-free paths. The control that generates a state
closest to xrand is chosen. The newly generated node is called xnew and is added as
a vertex, and the control as the edge connecting xnear to xnew. The process continues
until a state is found within the goal region, or a predefined threshold planning time has
elapsed. The present proposal modifies this algorithm by:

a) Introducing a steering method based on the pose of the end-effector, i.e. to steer the
tree growth a pose prand of the end-effector is randomly sampled and the node of the
tree to be expanded is the one that corresponds to a configuration of the robot with
the end-effector nearest to prand. Moreover, a sampling bias is considered towards
configurations that place the origin of the gripper reference frame within the target
region (a bias index B ∈ [0, 1] determines the ratio of the configurations explicitly
sampled within the target region).

b) Introducing a knowledge-based state-validity checker to reject states that may lay
to a failed execution (Sec. 4.2).

c) Introducing a confidence index to filter out not robust enough controls (Sec. 4.2).
d) Updating the pose uncertainty when interactions occur (Sec. 4.2).

The planning process for the proposed approach is outlined in Algorithm 4. As an
input it takes the semantic knowledge stored in the form of ontologies1 KS, the initial

1 https://sir.upc.edu/projects/ontologies/



Algorithm 4 Physics-based Motion Planner for Grasping
Input: Semantic knowledge KS, Initial state Einit, Initial pose uncertainty region UEinit , Target

object Otarget
m , Time threshold Tmax, Bias index B, Robustness threshold Rthreshold

Output: A sequence of controls to move the robot to a pre-grasp goal configuration
1: Km ←ReasoningProcess(KS,Otarget

m , Einit)
2: Rgoal ←ComputeEndEffectorGoalRegion(Otarget

m )
3: T .init(Einit)
4: while planning time < Tmax do
5: prand ←SampleRandomPose(Km,B)
6: Enear ←SelectNodeToExpand(T ,prand)
7: {Enew u∆t} ←SearchControls(Enear,Km)
8: {c, Enear, Enew} ←ConfidenceIndex(UEnear , u∆t,Km)
9: if c > Rthreshold then

10: T .AddVertex(Enew)
11: T .AddEdge(Enear, Enew, u∆t)
12: UEnew ← UpdateUncertaintyRegion(Enear, Enew,UEnear )
13: if GetEndEffectorPose(Enew) ∈ Rgoal then
14: return Path←RetrievePath(T )
15: end if
16: end if
17: end while
18: return NULL

state of the environment Einit that contains the initial state of the robot and the objects,
the initial pose uncertainty region UEinit , the target object Otarget

m , the time threshold
Tmax, the bias index B, and the robustness threshold Rthreshold. As an output it returns a
trajectory from the initial state of the robot xinit to a goal state xgoal that places the robot
end-effector in the goal regionRgoal. The key parts of the proposed algorithm are:

1. Initialization (lines 1-3): It includes the reasoning process to determine the manip-
ulation knowledge, as detailed in Sec. 4.1, and the determination of the regionRgoal
where the end-effector should lie to grasp the object by closing the fingers (i.e. the
pose uncertainty of the target object must lie within the gripper aperture, for any
configuration withinRgoal).

2. Tree steering (lines 5-6): It includes the sampling of a pose of the end-effector prand
using a region-biased sampler, and the determination of the node of the tree, called
Enear, with a corresponding end-effector pose nearest to prand (a weighted distance
measure between translations and rotations is used).

3. Control selection (lines 7-8): It first selects a control using a direct control sam-
pling [21], i.e. it samples of a set of random controls and time durations, applies
them toEnear using the state propagator and the validity-checker, and selects the one
that generates a best valid stateEnew (in our case the one that brings the end-effector
pose closest to prand). Then, the robustness of the chosen control is evaluated with
a confidence index as detailed in Sec.4.2.

4. Tree growing (lines 9-16): Any control with a confidence index above a given
threshold, is added as edge and the generated state as a vertex (lines 10-11). Also
the uncertainty region is updated (line 12) as detailed in Sec. 4.2., and if the end-
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Fig. 4: (a) The 7 degree-of-freedom KUKA robot; (b,c,d) Scenarios where the path
to the target object (in green) is blocked by manipulatable objects (in blue) and fixed
objects (in red).

effector has reached the goal region then the path is retrieved as a sequence of
controls with the corresponding time durations.

5 Implementation, results and discussion

The proposed approach is implemented using The Kautham Project [22], an open source
motion planning framework that allows to plan under geometric, differential and physics-
based constraints, developed in C++ (https://sir.upc.edu/projects/kautham). It uses Open
Motion Planning Library (OMPL) [21] for the sampling-based motion planners. The
OMPL provides the integration with ODE to handle the physics-based constraints dur-
ing forward propagation. We implement the variant of kinodynamic RRT that take ad-
vantage of high-level reasoning process to guide the planner in an efficient way. The
high-level reasoning process is performed over semantic knowledge using Prolog. It is
done using the Knowrob software which is a tool to access the OWL knowledge by
providing predicates [23].

The proposal is validated using a KUKA lightweight robot with a two-fingers grip-
per for the three different scenarios presented in Fig. 4. The scenes consist of manipu-
latable objects (in blue), fixed objects (in red) and a target object (in green). The goal in
the presented scenarios is to move the gripper to a pre-grasping configuration to grasp
the target object. Since no collision-free trajectory exist from start to goal, to clear the
path towards the goal, the robot has to manipulate the objects in a controlled way. The
computed plan should be robust enough to be successfully executed in the presence of
object pose uncertainty. Fig. 5 depicts the sequence of executions of an example sce-
nario, the computed plan is executed by varying the pose of the object that must be
pushed away in order to reach the goal.

The key contribution of this study is the use of high-level knowledge and reasoning
process to efficiently plan grasping motions in the presence of object pose uncertainty.
To cope with uncertainty, the robustness of the selected controls is evaluated using the
confidence index, which is computed by repeatedly applying the control on a set of sam-
pled states and, from the outcomes, estimating the probability of finding valid resultant
state. This is a computationally expensive procedure, that is added to the computation-
ally cost of the direct control sampling used in any kinodynamic RRT. The planning
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Fig. 5: Snapshots of three task executions with different object poses: the first two rows
correspond to successful executions, whereas the last one corresponds to a failed exe-
cution. Video:https://sir.upc.edu/projects/kautham/videos/RAL-2.mp4

(a) (b)

Fig. 6: (a) shows the success rate of the planner using different values of B. (b) shows
the success rate of the execution by varying initial poses of the objects for different
values of confidence index.

time can be reduced, however, by choosing an adequate region bias or by lowering the
robustness threshold. As shown below, in the former case the chosen value can also
affect the planning success rate and, in the later case, the chosen value may affect the
execution success rate.

The bias index is a critical parameter since its value significantly affects the effi-
ciency of the planner. The planning success rate of the proposed approach is evalu-
ated by varying the bias index between 0 and 1. For each value of B, 20 queries were
launched (using the example scenarios), and setting the maximum planning time to
400s. The simulation was run on an Intel Core i7-4500U 1.80GHz CPU with 16 GB
memory. The success rate, computed based on the average number of successful runs,
is shown in Fig. 6-a. The highest success rate for all the example scenarios is obtained
by setting 0.25 ≤ B ≤ 0.5. Running the ontological physics-based motion planning ap-
proach [18] the success rate was only around 3%, due to the fact that this planner does
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Fig. 7: Execution on real robot for the nominal initial state, goal is to grasp
the yellow cylinder. The path to the goal is obstructed with the white box.
Video:https://sir.upc.edu/projects/kautham/videos/RAL-1.mp4

not reason on the post-effect of the interactions and since obstacles are very close to the
target object, they end by displacing it thus preventing the success of the task execu-
tion2.

Regarding the robustness threshold, motion plans have been computed for values
equal to 30%, 60%, and 90%, with B fixed to 0.3. Then, each computed plan has been
executed 20 times in simulation by varying the initial state of the environment. For
small deviations in the pose, the computed plans always executed successfully, whereas
for the large deviations, the computed plan lead sometimes to unsuccessful results. The
success rate of the execution for different values of confidence index is depicted in
Fig. 6-b. The execution success rate improves with the robustness threshold, being the
effect more relevant when changing from from 30 to 60, and more slightly when in-
creasing up to 90. The computed plan for a scenario similar to the first one has also
been executed with the real robot as shown in Fig. 7. The same behavior has been ob-
served.

6 Conclusions

A knowledge-oriented physics-based motion planning approach is proposed for plan-
ning the grasping motions in cluttered environments. The semantic knowledge about
the scene is stored using OWL ontologies. A knowledge-based reasoning process is
proposed that compute the target region and uncertainty regions. The computed regions
are used by the sampling-based kinodynamic motion planner that performs the region
bias state sampling to plan efficiently, and by the validity checker that considers as non-
valid those states that may prevent the success of the task. The proposed approach is
validated for different scenarios. The results show a significant improvement in the ex-
ecution success rate. As a future work, the proposed approach will consider uncertainty
in the interaction parameters, like friction coefficients or force directions.
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