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Abstract. In manipulation planning, dynamic interactions between the objects
and the robots play a significant role. In this scope, dynamic engines allow to
consider them within motion planners, giving rise to physics-based motion plan-
ners that consider the purposeful manipulation of objects. In this context, the
representation of knowledge regarding how the objects have to be manipulated
eases a semantic-based reasoning that reduces the computational cost of physics-
based planners. In this work, an ontology framework is proposed to organize the
knowledge needed for physics-based manipulation planning, allowing to derive
manipulation regions and behaviors. A semantic map is constructed to categorize
and assign the manipulation constraints based on the robot, the objects and the
type of actions. The ontology framework can be queried using Description Lan-
guage to obtain the necessary knowledge for the robot to manipulate the objects
in its environment.

1 Introduction

Manipulation planning in human environments is one of the challenging areas in robotics
research. It is focused on making the robot capable of performing complex manipulation
tasks, which requires manipulation planning capabilities in clutter and unstructured en-
vironments. These capabilities need the rich semantic description of the scene, knowl-
edge about the physical behavior of the objects, and reasoning about the performed
manipulation actions. Additionally, they require a detailed knowledge of the objects in
the robot workspace and their physical properties (such as object dynamics during ma-
nipulation). Knowledge can be defined in the form of ontologies, that are a structured
way of representing information, and is becoming a standardized way of representing
the knowledge for the robots.

Various representation alternatives have been proposed to describe the knowledge
about the way of manipulating objects. They define the relationships between the high-
level description of the objects and the low-level data about the environment. To handle
the physical behavior of the objects during manipulation, some approaches such as [1]
are proposed that describe the physics-based knowledge and reason about it. These ap-
proaches are used to relate the physical quantities. For instance, the product of mass and
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acceleration describe the force (according to the Newton second law of motion). The
main idea of these approaches is to formalize physics laws as logical axioms in an ab-
stract model and derive what will happen from these axioms. However, the main issues
are the predictions based on axioms of qualitative physics [1], because this formaliza-
tion is complex and computationally intensive, particularly when manipulation actions
are considered [2]. However, this problem can be avoided by using physics engines
such as Open Dynamic Engine (ODE, http://www.ode.org/). These engines describe the
dynamics of the system with precise accuracy, provided that the interaction dynamics,
such as friction between the surfaces, bounciness of the surface and penetration depth
of the rigid body are given. These parameters must be set carefully, since small changes
may lead to different results.

The contribution of this paper is the proposal of an ontology framework for physics-
based manipulation planning based on the formalization and extension of the ontology
for physics-based manipulation planning proposed in [4]. In particular:

– Formalization according to the Ontology-based Unified Robot Knowledge OUR-K
[5], a standardized ontological framework for service robots.

– Semantic map extension to automatically construct a semantic map to categorize
the objects into different types according to the objects and task constraints.

– Interaction dynamics extension to define a knowledge that allows the planner to
deal with interaction dynamics.

Description logic (DL) language will be used to describe the framework classes and
to query the ontologies. The ontological framework copes with low-level information,
i.e. physical parameters of objects, and high-level information. This framework aims to
facilitate robots to perform manipulation tasks by providing, on the one hand, physical
parameters to ODE simulation engine to accurately model the physical environment,
and on other hand, knowledge describing how objects should be manipulated. No infor-
mation regarding the uncertainty in the objects type or poses will be coded in the first
version of the proposed ontology framework.

2 Related Work

Various studies have investigated the use of knowledge in the form of ontologies for the
detailed description of real environments. Ontologies are usually designed by consider-
ing particular areas, such as task planning [6], space representation and navigation [7],
locomotion [8], semantic representation for human collaboration [9], and others. How-
ever, many robotic tasks in real environments need task, motion and manipulation plan-
ning together. Therefore, the need for a generic and well-defined knowledge represen-
tation is becoming more evident.

Work on ontology standards for generalizing knowledge representation for robots
has been done through the Ontologies for Robotics and Automation Working Group
(ORA WG) [3, 10]. This group is divided into four sub-groups entitled: Upper Ontol-
ogy/Methodology(UpOM), Autonomous Robots (AuR), Service Robots (SeR), and In-
dustrial Robots (InR). Different standards are being developed in each sub-group, with
CORA (Core Ontology for Robotics and Automation) being the common to all of them.
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On the other hand, there are other efforts done to define ontologies frameworks for
related fields, such as: KIEF [11] (Knowledge Intensive Engineering Framework) that
describes a way to handle several activities of engineering, such as design, manufac-
turing, operation, maintenance, and recycling; KAON [12] (Karlsruhe ontology) that
describes a generic ontological semantic structure that is used in OUR-K [5] to estab-
lish an ontology framework for service robots in human environment; the physics-based
manipulation ontology in [13], involving knowledge about the world and the planning
phase to address a high-level and a low-level reasoning processes related to task and
motion planning; and the Open Semantic Framework [14] proposed to help cognitive
robots to execute manipulation tasks by integrating ontology with a cloud-based engine
used to detect the objects and retrieve their manipulation actions from the ontology.

2.1 Description of OUR-K Knowledge Classes

The main contribution of OUR-K [5] framework is the establishment of an ontology-
based unified knowledge for service robots in human environments by integrating low-
level data (sensory data) with high-level knowledge (context information). This frame-
work is described within a concept hierarchy through the use of an ontology. It is com-
posed of five main classes: feature, object, space, context, and action. Each knowledge
class has three levels (except feature class that has two), and each level has three on-
tological layers: metaontology, ontology, and ontology instance. Metaontology is used
to represent generic information, such as the concept of physical object in the service
robotics field. Ontology is an ontology schema layer used for domain specific knowl-
edge, for instance, in service robotics, ontology layer contains the knowledge of a par-
ticular domain such as kitchen. Ontology instance is used to store the information of the
objects (such as their features). Because ontology is an object-oriented and frame-based
language the metaontology layer can provide a template for ontology layer to build ter-
minology, while the ontology instance layer can be defined as an individual frame. The
information of ontological classes, properties, and instances is transferred within uni-
directional reasoning in the same knowledge level. Whereas, bidirectional reasoning
relates several knowledge classes or knowledge levels. OUR-K classes are described
below:

Feature class is used to define how objects are perceived. It has two levels: percep-
tual feature and perceptual concept. In perceptual feature level, the real environment
is described from the perceptual perspective, i.e. sensors, that perceive features of in-
stances such as color, texture, and scale invariant feature transform (SIFT). In perceptual
concept level, concepts are grounded to perceptual features.

Object class is used to define objects, their functionality and their parts. It is com-
posed of three levels: part-object level, object level and compound level. Part-object
includes parts of objects according to their functionality (for example, body and handle
each has its own functionality, i.e. containing and grasping respectively). Object level
includes object name and functionality, for instance, the composition of a cup is body
and handle. In compound level, closely related objects that can be utilized together are
linked (e.g. a cup and a saucer).

Space class builds a semantic map and uses it to enhance the representation of the
environment, which requires geometrical, positional information and qualitative fea-
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tures, to express relations. The construction of a semantic map depends on two types of
maps: metric and topological. The former defines areas in the environment, which may
be empty or occupied. The latter contains the information of the topology of the free
region (e.g. with a graph extracted from a voronoi diagram). The relation between these
maps and objects is stored in the semantic map.

Context class is used to understand the situation of the objects in the environment.
This situation is derived from two types of relations: spatial and temporal, which are
defined in spatial and temporal levels, respectively, such as crowd, which means that
the robot will encounter some obstacles. The spatial level contains the spatial relations
(such as on, in, left, and right functions) and space classes (semantic map). Temporal
level contains the temporal relations such as before, after, overlap, meet.

Action class is used to define a task and the way of execution it. Action class con-
sists of three levels: primitive behavior, sub-task and task. In primitive behavior, per-
ceptual, motion and manipulation behaviors are defined (e.g. turn, goto, extractcolor,
extractSIFT). In a sub-task level, a short-term sequence of behaviors are defined, such
as gotoSpace, localization. A task such as navigate, delivery is defined in task level.
It can be decomposed into sub-tasks, which can be decomposed into primitive behav-
iors. For example, recognizeObject is a task of finding an object within an image (e.g.
extractcolor, extractSIFT).

2.2 First Proposal of a Physics-based Manipulation Ontology

In previous works [13], the authors proposed a manipulation ontology to represent
knowledge to face the manipulation problems a motion planner has to deal with when
the robot moves and encounters obstacles in the environment. Two classification of ob-
jects are proposed in this ontology, fixed bodies and manipulatable bodies (i.e. obstacles
that can be pushed away). The former remains static during the whole planning process,
even if collision happens with other manipulatable objects. The latter can be manipu-
lated during the planning. The manipulatable bodies are classified as free manipulatable
bodies and constrained-oriented manipulatable bodies. The free manipulatable bodies
can move in any direction (according to the dynamics of rigid bodies) when collision
occur. The constraint-oriented manipulatable bodies have some allowable motion direc-
tions and others are restricted. The manipulation constraints are modeled by defining the
manipulatable region from where the object can be pushed from (i.e. where the robot
should be located to apply a pushing force).

The knowledge is structured by defining six classes derived from a general manip-
ulation class. These classes describe the initial state, goal state, action, region, object
type, and object elements. Initial state class describes an initial location of the robot,
while goal state class shows the final location of the objects. Action class contains dif-
ferent manipulation primitive actions, like pick, place and push. Region class defines
three sub-classes: manipulation, object, and goal region. ManipulationRegion sub-class
defines the region of manipulation, i.e. from where the robot can interact with the ob-
ject. ObjectRegion sub-class is defined as a bounding box of an object. GoalRegion
sub-class is a circular region defined around the goal state. ObjectType class defines the
manipulatable objects and free objects and their constraints. ObjectElements describe
the feature of the objects.
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3 An Ontology Framework for Physics-based Manipulation

The representation of robot knowledge with an ontology has interesting properties like
shareability and exchangeability [15]. Knowledge is represented by defining the prop-
erties and relations between concepts that provides a rich semantic description to aid
the solving of particular problems. The aim of this paper is to modify the OUR-K ontol-
ogy framework to cope with manipulation problems. As shown in Fig. 1, the proposed
ontology framework has six classes. The object class and the context class are the same
as in the OUR-K framework. The other four are described in the following subsections.

Fig. 1. Classes of the proposed physics-based ontologies for manipulation, based on the OUR-K
framework.

Fig. 2. Schema of feature class that explains the hierarchy of the concepts, features, and relations
via axioms
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Level Tuple Example
Cp physicalFeature, InteractionParameter, material, X , Y
Rel has-physicalFeature, has-InteractionParameter, has-material
HC material: physicalFeature, X: material, Y: InteractionParameter
HR has-material: has-physicalFeature

Fe
at

ur
e

le
ve

l
A0 ∃X,Y | material(X) ∧ InteractionParameter(Y) ∧ has-physicalFeature(X,Y)
Cp physicalObject, rigidBody, Interaction, X
Rel has-physicalObject,has-rigidBody, has-interaction
HC Rigid body: physicalObject, X: Rigid body
HR has-Rigid body: has-physicalObject

C
on

ce
pt

le
ve

l

A0 ∃X,Y | Rigid body(X) ∧ InteractionParameter(Y) ∧ has-InteractionParameter(X,Y)

Table 1. Metaontology layer for the feature class. Cp, Rel, HC , HR, A0 stand for concept,
relation, hierarchy of concept, hierarchy of relation, and axioms, respectively, following nomen-
clature of [5].

3.1 Feature class

In the proposed framework, the feature class has two levels: physical concept and phys-
ical feature. The concepts of rigidbody and interaction are defined in the concept
level, and their features in terms of material and interaction parameters in feature level.
Fig. 2 describes the ontology schema of the feature class. For example, interaction is
a concept defined as “Contact between two surfaces”, while its features depends on
the type of material, i.e. each material has its properties like friction coefficients, den-
sity, etc. They are linked together (material and its properties) via axioms (facts), as
described in Table1. For example, to handle a cup (which is made from A), the interac-
tion occurs between two rigid bodies, cup and robot (its end-effector is made from B),
and each has its physical properties, as described below using DL:

Interaction
∧∃hasSuperclass(Rigidbody, PhysicalObject)
∧∃hasInterParameter(interactionParameter,Rigidbody)
∧∃hasmaterial(material, Rigidbody)
∧∃ismaterial(A,material)
∧∃ismaterial(B,material)
∧∃hasfeature(friction, interactionParameter)

Axioms define that the material A has properties, such as friction coefficient, den-
sity, slip, CFM (Constrain Force Mixing), and bounce (see axioms of feature class in
Table1). The physical features are used by the ODE simulator to accurately model the
physical environment.

3.2 Actor class

Actor class is a new-defined class that describes the properties of the robot in the en-
vironment. It consists of three levels: robot kinematics, dynamics, and constraints.As
described in Table 2, kinematic-level defines the kinematic structure of the robot and
its location in the workspace, whereas dynamic-level contains the dynamic parameters
of the joints of the robot, such as dumping, joint stiffness, and maximum efforts. In
the constraints-level, based on kinematics and dynamics features, the robot working
constraints are extracted.
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Level Tuple Example
Cp Robot, kinematic, forward, inverse, position, jointConfiguration, X,Y
Rel has-Robot, has-Kinematic, has-forward, has-inverse,

has-position, has-jointConfiguration
HC forward: position, inverse: jointConfiguration, X: Robot, Y: Kinematic
HR has-forward: has-position, has-inverse: has-jointConfiguration

K
in

em
at

ic
le

ve
l

A0 ∃X,Y | Robot(X) ∧ Kinematic(Y) ∧ jointLimitations(Y)
Cp Dynamic, DynamicParameter
Rel has-Dynamic, has-DynamicParameter
HC Dynamic: DynamicParameter
HR has-Dynamic: has-DynamicParameter

D
yn

am
ic

le
ve

l

A0

Cp RobotConstraint, jointConstraint, DynamicConstraint, X, Y
Rel has-RobotConstraint, has-jointConstraint, has-DynamicConstraint
HC RobotConstraint: jointConstraint, RobotConstraint: DynamicConstraint Y: RobotConstraint
HR has-jointConstraint: has-RobotConstraint,

has-DynamicConstraint: has-RobotConstraint

R
ob

ot
C

on
st

ra
in

t

A0 ∃X,Y | Robot(X) ∧ RobotConstraint(Y) ∧ has-RobotConstraint(X,Y)

Table 2. Metaontology layer for the actor class.

3.3 Space class

figures/SemanticClass-eps-converted-to.pdf

Fig. 3. Schema of space class that describes the outcome of semantic map. The legend of different
color shows that the classes information that is required to generate the semantic map.

In our framework, the space class contains three knowledge levels: metric map,
topological map, and semantic map. As described in Table 3, a metric map contains
empty and occupied spaces (by either objects or the robot). Rigid body is classified
into single, and composite (see Fig. 3). Topological map defines the topology of the
workspace, including where the objects are located in the workspace. Semantic map cat-
egorizes physical objects in the environment along the manipulation constraints. These
constraints are defined as a function of the robot. It means that semantic map S depends
on four parameters S = (O,R,A, T ), where: O is the set of objects that is provided
by object class, R is the set of robot working constraints that is provided by the actor
class, A is an action that is provided by the action class, and T is a topological map
that is provided by the space class. The outcome of the semantic map is to assign the
manipulation constraint by using DL reasoning, i.e. as shown in Fig. 3, the outcome of
the semantic map due to reasoning is the type of object and its constraints.

3.4 Action class

The action knowledge class is composed of three levels: primitive behavior, sub-task,
and task levels. A task is decomposed into sub-tasks, while sub-tasks involve primitive
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Level Tuple Example
Cp MetricMap, Space, EmptySpace, OccupiedSpace
Rel has-MetricMap, has-EmptySpace, has-OccupiedSpace
HC EmptySpace: Space, OccupiedSpace: Space
HR has-EmptySpace: has-Space, has-OccupiedSpace: has-Space

M
et

ri
c

m
ap

A0

Cp TopologicalMap, singleObject, compositeObject, X, Y
Rel has-TopologicalMap,has-rigidBody, has-singleObject, has-compositeObject, has-Robot
HC TopologicalMap: WorkSpace, rigidBody: singleObject,

rigidBody: compositeObject, TopologicalMap: Robot
HR has-singleObject: has-TopologicalMap, has-compositeObject: has-TopologicalMap,

has-Robot: has-TopologicalMap

To
po

lo
gi

ca
lm

ap

A0 ∃X,Y | singleObject(X) ∧ OccupiedSpace(Y) ∧ has-OccupiedSpace(X,Y)
∃X,Y | compositeObject(X) ∧ OccupiedSpace(Y) ∧ has-OccupiedSpace(X,Y)

∃X,Y | Robot(X) ∧ OccupiedSpace(Y) ∧ has-OccupiedSpace(X,Y)
Cp SemanticMap, rigidBody, RobotConstraint, action, X, Y
Rel has-SemanticMap: has-rigidBody has-SemanticMap: has-RobotConstraint, has-SemanticMap: has-action
HC rigidBody: SemanticMap, RobotConstraint: SemanticMap
HR

Se
m

an
tic

m
ap

A0 ∃X,Y | SemanticMap(X) ∧ action(Y) ∧ has-OccupiedSpace(X,Y)

Table 3. Metaontology layer for the space class.

Fig. 4. Schema of action class that is divided into two sub-classes: single and composed body.
Some of the actions are mentioned in each sub-class.

behaviors. Table 4 explains the function of the three levels. X and Y could be one or
a set of actions, as shown in Fig. 4. The ontology schema of the layers of the three
levels in action class is instantiated by a planner. When requested to plan, the planner
checks on the topological map to know which object (or robot) is occupied with which
space. Then, the semantic map is used to extract the constraints of the object (single
or composite), and the robot w.r.t the action. Context class, particularly temporal level,
can be used by the planner to set the sequence of action of a task.

4 Usage

To illustrate the proposal some simulation examples are performed using The Kautham
Project [?]. It is a C++ based open-source tool for motion planning, that includes ge-
ometric, kinodynamic, and physics-based motion planner. It uses OMPL [?] for the
core set of planning algorithm. OMPL is a C++ based open-source library for sampling
based motion planning. Physics-based simulation are modeled using Open Dynamic
Engine (ODE) that is used as state propagator for physics-based planning algorithm.
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Level Tuple Example
Cp PrimitiveBehavior, PhysicalBehavior, MotionBehavior, ManipulationBehavior, X, Y
Rel has-Behavior, has-BehaviorTarget, has-physicalParameter
HC PrimitiveBehavior: PhysicalBehavior, PrimitiveBehavior: MotionBehavior,

PrimitiveBehavior: ManipulationBehavior
HR

Pr
im

iti
ve

B
eh

av
io

r
A0 ∃X,Y | PrimitiveBehavior(X) ∧ object(Y) ∧ has-BehaviorTarget(X,Y)
Cp SubTask, MotionSubTask, ManipulationSubTask, X, Y
Rel has-SubTask,has-SubTaskTarget, has-SubTaskPhysicalParameter, has-Sequence
HC SubTask: MotionSubTask SubTask: ManipulationSubTask
HR has-Behavior: has-SubTask

Su
bT

as
k

le
ve

l

A0 ∃X ,∃Y | SubTask(X) ∧ Behavior(Y) ∧ has-Sequence(X,Y)
Cp Task, X, Y
Rel has-Task, has-TaskTarget, has-TaskPhysicalParameter
HC

HR has-SubTask: has-Task

Ta
sk

le
ve

l

A0 ∃X ,∃Y | Task(X) ∧ SubTask(Y) ∧ has-SubTask(X,Y)

Table 4. Metaontology layer for the action class.

Ontologies are encoded using the Web Ontology Language (OWL) [?]. XML-based
file format is used to access and share such knowledge. The ontologies are designed us-
ing the Protégé (http://protege.stanford.edu/) editor. It is an open-source software that
can provide an ontology editor to develop knowledge-based applications. The query
over the ontological knowledge is performed using Prolog predicates. A sequence of

Fig. 5. Kautham scenes that explain the scenarios of manipulation the cup and wine-glass: a) push
the cup, b) pick the cup, c) move the obstacle coca-can then, d) grasp the wine-glass.

actions was computed using the task planning approach proposed in [13]. In order to
know the way of executing these actions, ontological knowledge can be used. A high
level task such as organizethetable can be satisfied by applying some actions like
push, pick, place, grasp, etc. In the following examples, some queries to the ontology
framework are presented using DL.

Fig. 5 shows a scene of The Kautham Project. It has two types of objects: cup (body
and handle), that is a pickable or pushable object, and a Coca-can that is a pushable
object. The aim is to show the manipulation behavior of the objects with respect to
the constraints of the robot, the objects and the type of action. For example, the cup
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Fig. 6. Example of the cup that shows the required information from classes to apply pick and
push actions. The legend defines the name of classes.

is a pickable object using its handle, or a pushable object using the body, as shown in
example (1) and (2) below. Fig. 6 depicts the flow of information between the classes.

Additionally, in example (3), the behavior to grasp the wine-glass, that can be done
from the cylinder (leg) (according to robot gripper constraint with respect to the diam-
eter of the wine-glass) is described. As shown in Fig. 5, the path of grasping should be
cleared (i.e. removing the obstacle of Coca-can). There are many scenarios to remove
the obstacles, in order to grasp the goal object (wine-glass), such as pick, push or pull.
However, with respect to the robot and object constraints, pick and place actions from
the body of wine-glass are not possible in this case. In addition, regarding the informa-
tion in the context class “Crowd” (that means the robot will encounter some obstacles),
the best scenario is manipulation path, as a sub-task provided by the task planner (i.e.
a push action is applied to move the Coca-can to execute the grasp action of the wine-
glass).
Example 1: This example describes the query to the knowledge to push a cup.

Cup:= rigid body
∧∃hasSuperclass(PhysicalObject, Rigidbody)
∧∃hasPart(Cup, handle)
∧∃hasPart(Cup, body)
∧∃hasAction(Cup, push)
∧∃hasType(Cup,manipulatable)
∧∃hasInteractionRegion(Cup, body)
∧¬∃hasInteractionRegion(Cup, handle)
∧∃hasInteractionV elocity(body, velocity)
∧∃hasInteractionParameter(body, physicalProperties)
∧∃hasInteractionParameter(gripper, physicalProperties)

Example 2: This example describes the query to the knowledge to pick a cup.
Cup:= rigid body
∧∃hasSuperclass(PhysicalObject, Rigidbody)
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∧∃hasPart(Cup, handle)
∧∃hasPart(Cup, body)
∧∃hasAction(Cup, pick)
∧∃hasType(Cup,manipulatable)
∧∃hasInteractionRegion(Cup, handle)
∧¬∃hasInteractionRegion(Cup, body)
∧∃hasInteractionV elocity(body, velocity)
∧∃hasInteractionParameter(handle, physicalProperties)
∧∃hasInteractionParameter(gripper, physicalProperties)

Example 3: This example describes two queries to the knowledge to pick the wine-
glass when it is obstructed by an obstacle (Coca-can), set by the task planner.

a. Push obstacle Coca-can:= rigid body
∧∃hasSuperclass(PhysicalObject, Rigidbody)
∧∃hasObstacles(Rigidbody, Cocacan)
∧∃hasAction(Cocacan, push)
∧∃hasType(Cocacan,manipulatable)
∧∃hasInteractionRegion(Cocacan, body)
∧∃hasInteractionV elocity(body, velocity)
∧∃hasInteractionParameter(body, physicalProperties)
∧∃hasInteractionParameter(gripper, physicalProperties)

b. Grasp the wine-glass
Wine-glass:= rigid body
∧∃hasSuperclass(PhysicalObject, Rigidbody)
∧∃hasObject(Rigidbody,Wineglass)
∧∃hasAction(Wineglass, grasp)
∧∃hasType(Wineglass,manipulatable)
∧∃hasInteractionRegion(Wineglass, cylinder)
∧∃hasInteractionV elocity(cylinder, velocity)
∧∃hasInteractionParameter(cylinder, physicalProperties)

∧∃hasInteractionParameter(gripper, physicalProperties)

5 Conclusion

In this paper, we presented a knowledge representation in terms of ontologies for physics-
based manipulation planning. Instead of making predictions based on inferences, a se-
mantic map is generated to categorize and assign the manipulation constraints using
reasoning based on logical axioms. We extended the OUR-K framework with our pre-
vious ontology for physics-based manipulation problems, by adding actor class, which
describes the robot working constraints. The three examples of pick, push the cup and
grasp the wine-glass (after removing the obstacle) are successfully executed using The
Kautham Project integrated with ODE dynamic engine. This ontology formulation is
currently being extended with perception features, concepts and procedures.
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4. Ud Din, M., Akbari, A., Rosell Gratacòs, J.: Ontological physics-based motion planning for
manipulation. In: Proceedings of the 20th IEEE International Conference on Emerging Tech-
nologies and Factory Automation, Institute of Electrical and Electronics Engineers (IEEE)
(2015)

5. Lim, G.H., Suh, I.H., Suh, H.: Ontology-based unified robot knowledge for service robots in
indoor environments. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans 41(3) (2011) 492–509

6. Cambon, S., Alami, R., Gravot, F.: A hybrid approach to intricate motion, manipulation and
task planning. The International Journal of Robotics Research 28(1) (2009) 104–126

7. Bateman, J.A., Farrar, S.: Modelling models of robot navigation using formal spatial ontol-
ogy. In: Spatial Cognition, Springer (2004) 366–389

8. Chatterjee, R., Takao, I., Matsuno, F., Tadokoro, S.: Robot description ontology and bases for
surface locomotion evaluation. In: Safety, Security and Rescue Robotics, Workshop, 2005
IEEE International, IEEE (2005) 242–247

9. Mozos, O.M., Triebel, R., Jensfelt, P., Rottmann, A., Burgard, W.: Supervised semantic
labeling of places using information extracted from sensor data. Robotics and Autonomous
Systems 55(5) (2007) 391–402
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PhD thesis, Örebro university (2015)


