
Sampling-based path planning for geometrically-constrained objects
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Abstract— One of the key factors that affect the success and
efficiency of sampling-based path planners is the obtention of
samples in the more relevant regions of the workspace. This is
known as importance sampling, and different approaches have
already been proposed in this direction. This paper proposes
a novel method to bias sampling by means of geometric
constraints that reduces the sampling space to sets of lower
dimensional submanifolds. These constraints may be imposed
by the kinematic structure of the actuation system, by the task
specification, or provided by a human user as an intuitive way
to include problem knowledge to the planner. The method has
been implemented and tested on a probabilistic roadmap plan-
ner giving promising results. A variant using a deterministic
sampling source is also reported.

I. INTRODUCTION

Tasks where an object has to be positioned with respect

to its surroundings are ubiquitous in robotics, and therefore

one of the main challenges in this field is the planning

of collision-free paths for an object from a start to a goal

configuration in a workspace containing obstacles. Path

planning is often performed in the robot’s Configuration

Space (C-space), where the robot is mapped to a point

and the obstacles in the workspace are enlarged accord-

ingly (C-obstacles). The characterization of C-obstacles is

a difficult issue, that can be avoided by using sampling-

based approaches. These methods consist in the generation of

collision-free C-space samples and their subsequent intercon-

nection by free paths, forming either graphs or trees. Graph

representations of the sample connectivity are convenient for

algorithms that solve multiquery problems like probabilistic

roadmap planners (PRM) [1], while tree representations are

better suited for algorithms that solve single query problems,

like the rapidly-exploring random trees (RRT) [2].

Planning algorithms that use probabilistic sampling have

been demonstrated to be probabilistically complete. For a

basic PRM, the minimum number of samples necessary to

achieve a probability of failure below a certain threshold has

been determined in [3]. However, the performance of these

algorithms strongly depends on the total number of samples,

so it should be kept as low as possible.

Importance sampling strategies have been proposed to

increase the density of samples in the more relevant areas

of the C-space. These strategies have been classified by [4]

into: a) those that bias samples using workspace information

[5], [6]; b) those that over-sample the C-space but quickly
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filter any non-promising configuration [7], [8]; c) those that

bias the sampling using the information gathered during

the construction of the roadmap or tree [9], [10]; and d)

those that deform (dilate) the free C-space to make it more

expansive to easily capture its connectivity [11], [12].

In this paper a novel importance sampling method for

sampling-based path planners is proposed. The method relies

on the imposition of geometric constraints that must be

satisfied between a mobile object (whose movements are

being planned) and its surroundings. The main motivation

for this work has been the observation that in many path

planning problems, the mobile object is constrained to a

submanifold with lower dimensionality than its embedding

space. These constraints may be imposed by the kinematic

structure of the actuation system (e.g., a planar manipulator

embedded in a three-dimensional workspace), or by the task

specification (e.g., to move a bucket filled with a liquid

without spilling its contents, or to maintain two parts aligned

during an assembly), to name just a few examples.

Geometric constraints provide a straightforward way of

specifying constrained movements by explicitly stating the

relations that must hold between two or more geometric

entities (distances, angles, tangencies, and the like). If the

constrained entities are rigid bodies, then the simultaneous

satisfaction of a set of geometric constraints yields a subman-

ifold of SE(3) of allowed movements, commonly referred

to as a configuration submanifold. Geometric constraint

solvers are used to find the map between constraint sets and

configuration submanifolds [13].

Planning collision-free movements of a constrained object

does not require sampling the whole configuration space, as

would be the case for a free-flying object, but rather the

regions where the object is allowed to move: its configura-

tion submanifold. If these regions define lower-dimensional

subspaces, then higher sample densities and success rates

can be achieved for similar sampling efforts, lowering the

impact of the curse of dimensionality. Furthermore, it will

be shown that geometric constraints also provide the human

user with a mechanism for including knowledge about the

relevant areas of the C-space on an otherwise unconstrained

problem.

The paper is structured as follows. Section II presents the

geometric constraint solver used to map sets of constraints

into configuration submanifolds. Then, the sampling methods

for a single and for multiple submanifolds is presented in

Section III. Finally, Section IV uses the proposed sam-

pling strategy within a probabilistic roadmap planner and

illustrates and evaluates it with some examples. A variant

sampling strategy using deterministic sequences is also dis-



cussed. Concluding remarks are presented in Section V.

II. THE GEOMETRIC CONSTRAINT SOLVER

Positioning Mobile with respect to Fixed (PMF), is a geo-

metric constraint solver that takes on the problem of finding

the configurations of a mobile rigid body that satisfy a set of

geometric constraints defined between elements of the body

and elements of its environment, which are considered fixed

[14]. PMF accepts as input constraints distance and angle

relations between points, lines, and planes. The solution

methodology exploits the fact that in a set of geometric

constraints, the rotational component can often be separated

from the translational one and solved independently. This

yields a solver that is computationally very efficient, with

solution times within the millisecond order of magnitude.

By means of logic reasoning and constraint rewriting, the

solver is able to map a broad family of input problems

to a few rotational and translational scenarios with known

closed-form solution. The solver can handle under-, well-,

and overconstrained (redundant or incompatible) problems

with multiple solutions. Figs. 1 and 2 depict the different

configuration submanifolds to which an object can be re-

stricted with PMF. All combinations between translational

and rotational submanifolds are possible. Each configura-

tion submanifold has a known parametric representation,

so particular solutions can be represented in the form of a

parameterized rigid transformation T (z) that depends on as

many parameters as available degrees of freedom (DOF),

where z is the parametric coordinates vector. Consequently,

a sweep across the parameter space will span the entire

configuration submanifold.

III. SAMPLING THE CONFIGURATION

SUBMANIFOLDS

Multiquery planners, like the PRM, have a preprocessing

stage that attempts to map the connectivity of the free

C-space (Cfree) onto a roadmap represented as a graph G.

The graph vertices represent the configurations sampled

from Cfree and the edges represent collision-free paths that

connect them. Then, in the query phase, the initial and the

goal configurations are connected to the roadmap and a path

is found using graph search algorithms.

Let N represent the total number of samples that are

taken from the C-space, (which includes both free and

collision samples). It is well known that the volume of a

space increases exponentially with a linear increase in its

dimension (i.e., the curse of dimensionality), so choosing

a value of N that captures sufficiently well the C-space

connectivity should take this into consideration. The average

sample density c is a parameter that relates the total number

of samples N to the dimension of the C-space n according

to N = cn. For uniform sampling techniques, c represents

the average number of samples per DOF.

A. Sampling a single configuration submanifold

The average sample density c is provided as input to the

proposed sampling method, which then uses it to compute

(a) Point: 0 T DOF (b) Sphere: 2 T DOF

(c) Line: 1 T DOF (d) Cylinder: 2 T DOF

(e) Circle/ellipse: 1 T DOF (f) Plane: 2 T DOF

Fig. 1. Translational submanifolds to which the point of an object can be
constrained, along with the associated number of translational degrees of
freedom (T DOF). One of the two objects is mobile, while the other remains
fixed, so for each of the above cases there are two different scenarios,
depending on which object is fixed. The case of unconstrained translations
(3 T DOF) is not depicted, but is also handled by the solver.

(a) Parallel vectors: 1 R DOF (b) Angle vectors: 2 R DOF

Fig. 2. Rotational submanifolds to which an object can be constrained,
along with the associated number of rotational degrees of freedom (R
DOF). The case of unconstrained rotations (3 R DOF) and fully constrained
rotations (0 R DOF) are not depicted, but are also handled by the solver.

the total number of samples N . For the unconstrained spatial

scenario, that is, the sampling of six-dimensional SE(3), the

total number of samples is N = c6. When constructing the

C-space representation of the workspace in the presence of

a single constraint scenario, samples are taken only from

the configuration submanifold of its associated constraint set,

which is a subset of SE(3). To simplify the discussion, it is

assumed that both the initial and final configurations of the

mobile object are contained in the configuration submanifold.

Note that this assumption can be relaxed by adding an extra

sampling effort that connects the configuration submanifold

to the problem endpoints (e.g., by means of a RRT).

The interface between the geometric constraint solver and

the planner is very simple and generic, and can be ex-

tended to other more sophisticated sampling-based planners

and importance sampling strategies [15]. When sampling a

submanifold, the planner does not need to know the explicit

parametric representation of the submanifold, but rather its

number of DOF, and the range of values each DOF parameter

can take (e.g., rotations about an axis are parameterized with

a single variable with values in [0, 2π)). To obtain a sample



in the configuration submanifold, the planner constructs the

parametric coordinates vector z by generating for each zi ∈ z

a random value within its valid parameter range, and provides

it to the geometric constraint solver that maps it to workspace

coordinates via T (z).
Changing either the planner or the geometric constraint

solver by a different implementation is straightforward as

long as the abovementioned interface is maintained. In fact,

the solver could even be substituted by a hardcoded T (z)
map, like the direct kinematics of a robot manipulator.

If the configuration submanifold has a dimension m < 6,

the number of samples needed to achieve a sample density

similar to that of the unconstrained scenario is cm, that is,

c(6−m) times less samples.

As an example, consider the scenario depicted in Fig. 3.

It is a simplified model of a laparoscopic surgery setup,

in which a slender tool enters a cavity (the “patient’s”

body) through a small opening, and must perform move-

ments while avoiding collisions with obstacles contained in

the cavity. The contents of the cavity are assumed to be

known (e.g., though some medical imaging technique). In

this scenario, the tool is not free to move in any direction,

but rather constrained by the opening so that the center of

rotation of the tool coincides with the opening centerpoint.

This constraint can be modelled as a point-line coincidence

constraint between the centerpoint of the opening (fixed

object) and the tool axis (mobile object). The configuration

submanifold associated to this constraint has four DOF:

three rotations about the fixed point, and translations along

the current direction of the tool axis. The needle could be

further constrained by other task-specific constraints, such

as following a trajectory with its tip, which would further

decrease the dimensionality of its configuration submanifold.

This scenario, however, will not be discussed.

By sampling only on the configuration submanifold, each

sample is guaranteed to comply with the constraints imposed

by the task, and the available computational power can be

used to improve sample density rather than performing a

more wasteful blind search through SE(3). For this partic-

ular example, the constrained PRM requires c2 less samples

than the basic PRM for a similar sample density (e.g.,

for c = 10, the constrained PRM requires 100 times less

samples, or put otherwise, if N = 106, then c = 10 for the

basic PRM, and c = 31.62 for the constrained PRM).

B. Sampling multiple configuration submanifolds

For problems where the movements of the mobile object

are represented as a sequence of constrained movements,

each taking place in a different configuration submanifold, a

connectivity graph Gcon is constructed between each of the

configuration submanifolds (note that Gcon is not the same

graph as the roadmap G).

First, each input constraint set is represented as a vertex

in Gcon labeled with a unique identifier A, B, C, etc., and

is solved to obtain its associated configuration submanifold.

Then, the connectivity tests are performed. Two submani-

folds are connected if their intersection is not null (otherwise

center of rotation

(a)

(b)

Fig. 3. Simplified model of a laparoscopic surgery setup. The slender tool
enters a cavity through a small opening on its top. (a) The tool is constrained
so that its axis coincides with the center of the opening. The constrained
tool has four DOF (shown as arrows) and a fixed center of rotation. (b)
Sequence from a constrained path returned by the planner.

Fig. 4. Example of a configuration submanifold connectivity graph
Gcon constructed for a problem with five input constraint sets, labeled
{A, B, C, D, E}, each represented with a graph vertex. The remaining
vertices represent intersections between constraint scenarios. Note that there
are two possible ways to connect configurations belonging to vertices
{A, B, C, D}, and that a configuration belonging to E cannot be connected
to any of the other vertices.

they are disconnected). This occurs when the simultaneous

satisfaction of two input constraint sets (e.g., A and B) yields

a valid solution. When this is the case, a new vertex labeled

as the union of the two input names is inserted in Gcon

(e.g., AB), and is connected with undirected edges to the

corresponding vertices (e.g., (A,AB) and (AB,B)).

Finally, an optional test can be performed to verify that the

start and goal configurations of the path planning problem

are connected by the configuration submanifolds (without

considering the obstacles). This is done by verifying that

the submanifolds to which these configurations belong lie

in the same connected component of Gcon. Fig. 4 depicts

an example graph constructed for a problem with five input

constraint sets.

When sampling multiple configuration submanifolds, cmi

samples are taken from each configuration submanifold in

Gcon (there is one submanifold per graph vertex), where mi



Algorithm 1 Preprocessing stage of the constrained PRM.

Require: c, Cin

G.vertexSet← ∅, G.edgeSet← ∅

Gcon = SUBMANIFOLD-CONNECTIVITY(Cin)
for all v ∈ Gcon.vertexSet do

m = dimension of submanifold contained in v
for all i = 1 to cm do

s =SAMPLE-SUBMANIFOLD(v)
if s ∈ Cfree then

INSERT(s, G.vertexSet)
for all q ∈ G.vertexSet such that
s 6= q and q ∈ NEIGHBORHOOD(s) do

if CONNECT(s, q) then

INSERT((s, q), G.edgeSet)
end if

end for

end if

end for

end for

represents the dimension of the ith submanifold. The total

number of samples N is then given by
∑

cmi .

Additionally, each sample is labelled with the identifier

of its corresponding vertex in Gcon, so when constructing

the roadmap graph G, the neighbors of a free sample s

are those free samples that lie within a certain predefined

distance dneigh from s and share a common identifier. The

latter condition is enforced by means of the set intersection

operation. For instance, two neighboring samples s and q

with labels A and AB, and such that d(s, q) < dneigh, will

be connected in G because A ∩ AB = A.

Section IV-C details an example problem containing mul-

tiple configuration submanifolds.

IV. A CONSTRAINT-BASED PROBABILISTIC

ROADMAP PLANNER

A. The algorithm

Algorithm 1 details the preprocessing stage for the con-

strained PRM. It takes as input the average sample density c

and the sets of input constraints Cin, and outputs a graph G

representing the roadmap. Its main functions are:

• Function SUBMANIFOLD-CONNECTIVITY(Cin) com-

putes the configuration submanifold connectivity graph

Gcon from the sets of input constraints in Cin. Each

vertex in Gcon is associated to a different submanifold.

• Function SAMPLE-SUBMANIFOLD(v) returns a random

sample from the submanifold associated to v.

• Function NEIGHBORHOOD(s) returns a set of samples

that lie within a predefined distance of sample s and

that also share at least one of its identifying labels

(i.e., neighboring samples from the same or adjacent

submanifolds). Distances are not measured on SE(3),
but along the configuration submanifolds.

• Function CONNECT(s, q) tests if a path in C-space that

connects the configurations s and q is free or not.

The local planner uses an iterative bisection method

to collision-check intermediate configurations up to

a certain spatial resolution [16]. These intermediate

configurations are computed by interpolating in the

parameter space of their associated configuration sub-

manifold, rather than directly on SE(3), and therefore

satisfy the imposed geometric constraints. Free paths

are labeled with a cost equal to the distance between

the configurations.

The query phase of the planner uses the A* algorithm with

the Euclidean distance heuristic.

In a previous work [17], Gcon was not computed, so

the submanifold intersections were unknown, hence their

connectivity. Samples were taken only from the submanifolds

associated to the input constraint sets, and labelled accord-

ingly (they had only one identifier, whereas in the current

approach they can have one or two). Transitions between

submanifolds were handled by multiplying the cost function

in CONNECT(s, q) by a large penalizing value when s and

q belong to different submanifolds. Although good results

were obtained, constraint satisfaction was not guaranteed at

the transitions. The present approach guarantees constraint

satisfaction all along the solution path.

B. Variant using deterministic sampling

Sampling-based methods usually rely on the use of a

random number generation source, although the use of

deterministic sampling sequences has been demonstrated

to be a good alternative [18]. Deterministic sampling se-

quences provide an incremental and uniform coverage of

C-space, with a better dispersion than random sampling.

Deterministic sampling has given slightly better results than

random sampling in roadmap planners [19], although such

an improvement may be limited to scenarios with few

degrees of freedom [4]. Since the constrained PRM samples

configuration submanifolds that commonly have less than

six degrees of freedom, the use of a deterministic sampling

sequence is an alternative that is worth exploring.

One of the most frequently used deterministic sequences

is Halton’s [20] due to its good dispersion. However, this

sequence lacks a lattice structure for easily computing neigh-

borhood relations, which is a very useful property for path

planning purposes. For this reason, the sd(k) sequence [21],

which is based on multiresolution grids was chosen as an

alternative to random sampling.

In order to accommodate deterministic sampling into

Algorithm 1, it is only necessary to reimplement function

SAMPLE-SUBMANIFOLD(v) so that it generates samples

according to the sd(k) sequence instead of randomly.

C. Example problem

The constrained PRM will be exemplified with the prob-

lem depicted in Fig. 5a, where an “S” shaped mobile object

has to move from a start to a goal configuration by traversing

a square hole in a wall and by avoiding a spherical obstacle.

Note that unlike the inherently constrained example of

Fig. 3, this problem features a free-flying object that is

unconstrained by the task definition. However, constraining

the mobile object serves as a mechanism for including user

knowledge about the problem into the sampling strategy. This

example compares the solutions provided by the basic and
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Fig. 5. (a) The “S” shaped object has to move from a start to a goal configuration by traversing a square hole in a wall and by avoiding a spherical
obstacle. (b) and (c) show different instants of a particular solution sequence from a perspective and top view, respectively. The translational submanifolds
to which the mobile object centerpoint is being constrained are explicitly shown with their corresponding labels.

constrained PRMs, and shows the tradeoff between a blind

search and a search guided by a user-defined decomposition

of the search space.

Inspection of the problem reveals that traversing the square

hole in the wall is a typical narrow-passage problem that can

be formulated and solved in a 3-DOF planar domain. Three

input constraint sets are used to characterize the allowed

movements of the mobile object and reduce the size of the

sampling space: one set for the narrow passage, and the

remaining two for connecting the planar problem to the initial

and final configurations:

A) Fix the orientation of the mobile object to that of its

initial configuration and constrain its centerpoint to a

line that passes through the initial centerpoint position

and is parallel to the z axis of the workspace (i.e. a

1-DOF submanifold).

B) Constrain a plane of the mobile object that passes

though its centerpoint and is parallel to its z axis to a

plane passing through the hole centerpoint and whose

normal is parallel to the z axis of the workspace (i.e.

a 3 DOF submanifold).

C) Maintain the z axis of the mobile object parallel to the

z axis of the workspace, and constrain its centerpoint

to a plane that is parallel to the wall and contains the

goal configuration (i.e. a 3 DOF submanifold).

Fig. 6 depicts the connectivity graph Gcon of the config-

uration submanifolds associated to the problem. Vertices A,

B, and C correspond to the above constraint sets. Vertex AB

represents the point intersection of constraint sets A and B,

and has 0 DOF. Vertex BC represents the line intersection of

constraint sets B and C, and has 2 DOF (translations along

the line and rotations about the z axis). Figs. 5b and 5c depict

different instants of a particular solution sequence from a

perspective and top view, respectively. The accompanying

video animates this solution sequence.

The total number of samples that must be obtained for this

problem evaluates to:

Fig. 6. Connectivity graph Gcon of the configuration submanifolds for
the problem depicted in Fig. 5.

N =
∑

cmi = c
︸︷︷︸

A

+ 1
︸︷︷︸

AB

+ c3
︸︷︷︸

B

+ c2
︸︷︷︸

BC

+ c3
︸︷︷︸

C

= 2c3 + c2 + c + 1.

Table I lists the number of samples N that must be taken

for different sample density values c for the constrained PRM

subject to the abovementioned user-defined constraint sets,

and compares them to the basic (unconstrained) PRM. It can

be seen that for the reported values of c, the constrained PRM

requires a number of samples that is between two and three

orders of magnitude smaller than what the basic PRM does.

This is very meaningful considering that the average success

rate of a PRM that uniformly samples the C-space strongly

depends on the value of c.

Fig. 7 shows the average success rate of the constrained

PRM for different values of c, as well as a normalized

measure of the average execution time. It can be seen that

success rates in excess of 95% can be achieved with rela-

tively modest sample counts (N < 5000). Both random and

deterministic sampling strategies were tested, and the latter

improved slightly the results of the planner while involving

a very small extra computational effort. The improvements

from the use of a deterministic sampling sequence become

noticeable for c > 8, reaching a maximum success rate

increase of 8.9% for c = 9.

To contrast these results, the average success rate of an

unconstrained PRM with N = 4577 was 2.5%. This number

of samples yields a sample density c = 4.08, whereas in the

constrained scenario with deterministic sampling the density

value rises to c = 13 and the success rate to over 98%,

for equal N . The effect of reducing the sampling space size

by constraining the mobile object has a great effect on the

success rate that can even be slightly improved by resorting



TABLE I

COMPARISON BETWEEN THE CONSTRAINED PRM AND THE BASIC PRM

FOR THE EXAMPLE DEPICTED IN FIG.5.

c N for the constrained PRM N for the basic PRM

N = 2c3 + c2 + c + 1 N = c6

7 743 117649
8 1097 262144
9 1549 531441

10 2111 1000000
11 2795 1771561
12 3613 2985984
13 4577 4826809
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Fig. 7. Average success rate and average execution times as a function of
the average sample density c, for solving the example of Fig.5 using the
constrained PRM. The average execution time has been normalized to the
[0, 1] interval.

to deterministic sampling sequences.

It is worth mentioning that the time required by the

geometric constraint solver to compute the map from con-

straint sets to configuration submanifolds is many orders of

magnitude smaller than the time required by the PRM to

perform the preprocessing stage, and thus can be considered

to add a negligible computational overhead.

V. CONCLUSIONS

This paper proposes an importance sampling method for

sampling-based path planners that bias the samples towards

submanifolds of the configuration space that are relevant

to the task. These submanifolds can be easily described in

terms of geometric constraint sets that are imposed by the

kinematics of the actuation system, by the task specifica-

tion, or as a way of conveying user problem knowledge

to the planner. The method has been shown to be simple

and computationally efficient, and relies on reducing the

dimensionality of the sampling space to substantially reduce

the number of samples required for a given success rate.

Experiments carried out on a probabilistic roadmap planner

show that high success rates can be achieved with sample

counts and execution times that are orders of magnitude

less than what would be required by an unconstrained PRM.

Both random and deterministic sampling strategies have been

tested, showing that the latter can further increase the success

rate of the planner on low-dimensional submanifolds.
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[14] A. Rodrı́guez, L. Basañez, and E. Celaya, “A relational positioning
methodology for robot task specification and execution,” IEEE Trans.

Robot., vol. 24, no. 3, pp. 600–611, 2008.
[15] X. T. Shawna Thomas, Marco Morales and N. M. Amato, “Biasing

samplers to improve motion planning performance,” in Proc. of Int.

Conf. on Robotics and Automation, 2007, pp. 1625–1630.
[16] R. Geraerts and M. H. Overmars, “Sampling and node adding in

probabilistic roadmap planners,” Robotics and Autonomous Systems,
vol. 54, no. 2, pp. 165–173, 2006.
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