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Abstract— Manipulation planning in human environments is
one of the challenging areas in robotics research. It is focused on
making the robot capable of performing complex manipulation
tasks, which requires manipulation planning capabilities in
cluttered and unstructured environments. These capabilities
need, on the one hand, a rich semantic description of the
scene and knowledge about the manipulation actions, and on
the other, a smart combination of task and motion planning
levels. A method, called K-TMP, is proposed here where: a)
knowledge is coded as an ontology framework with information
about objects, robots, sensors and actions, the workspace and
the context, as well as an inference mechanism for reasoning
over this knowledge; b) planning is done with an heuristic task
planner based on the Feed Forward method that uses a physics-
base motion planner to guide the search and find a feasible
sequence of actions to perform the task. Knowledge is used
at motion level to evaluate the potential interactions between
the robot and the objects, resulting in robust paths in cluttered
scenarios with the robot possibly interacting with some objects.
At task level knowledge is used to take into consideration all the
constraints affecting the actions, making the planning efficient.
A table-top example with a bi-manual robot is included, as well
as a discussion on challenges and future works.

I. INTRODUCTION

Challenging robotic problems, like manipulation task in
cluttered environments, require the planning at task and mo-
tion levels. Motion planning is devoted to finding collision-
free paths for the robot between two configurations and is
usually done in the configuration space using sampling-based
approaches. Several variants may allow to include different
constraints and even allow collision with some movable
objects, like physics-based motion planning. Task planning
is devoted to find a sequence of actions to fulfill a task. It is
usually modeled using a state-transition system, and can be
solved for instance with methods based on constraint solving
or based on heuristic state-space search, like the Fast forward
method.

Different tasks may have different grades of complexity,
both at symbolic and geometric levels, as well as regarding
the dependence between them. Logic states and action have
to be mapped to geometric instances, and a state transition
can only occur if the geometric instances satisfy the pre-
conditions of the action and if the action is geometrically
feasible. Therefore, a smart combination of task and motion
planning capabilities is required to make the process efficient.
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Also, the use of knowledge may enhance the planning capa-
bilities at both levels, giving more autonomy to the robots.
Knowledge can be modeled using ontologies, that represent
it in the form of concepts along relations. Ontologies can
be encoded using the Web Ontology Language (OWL),
which makes it a world-wide accessible database, and can
be queried and used for reasoning by means of Prolog
predicates.

We are mainly interested in table-top manipulation tasks
for bimanual robots. These types of tasks must cope with
blocking objects, require a correct selection of grasps and
placements, and must analyze the feasibility of actions. Also,
depending on the type of problem, goal ordering must be
carefully handled and even large task spaces may be possible,
requiring objects to be moved more than once for achieving
the goals.

Contributions: This paper proposes an ontology frame-
work to model manipulation knowledge, and a knowledge-
based task and motion planning method, called K-TMP. The
proposed method combines the heuristic-based Fast Forward
task planner with a physics-based motion planner (that
allows push actions) and the ontological knowledge. Both the
motion planner and the knowledge are used in off-line and
on-line reasoning processes on symbolic literals to determine
the actions feasibility and applicability that guide the search
of the plan, making the process efficient. The implemented
physics-based motion planner has also been used for grasp-
in-the-clutter tasks, where the robot can interact with the
obstacles obstructing the path towards the goal, moving them
away.

After this introduction the paper is structured as follows.
Sec. II presents the related work and Sec. III the frame-
work of the proposed approach. Sec. IV summarizes the
ontological manipulation framework and Sec. V and Sec. VI
the planning at motion and manipulation levels, respectively.
Finally, Sec. VII gives some implementation details, and Sec.
VIII some results and a discussion on challenges and future
work.

II. RELATED WORK

A. Knowledge representation and reasoning

Knowledge representation is concerned with structuring
concepts and relations such that they are usable for reasoning
tasks done by artificial systems (e.g. robots). Several tech-
niques are proposed for knowledge representation such as
ontologies. Formally, “Ontology is defined as an explicit,
formal specification of a shared conceptualization” [1]. The



conceptualization refers to the abstract models of entities in a
certain domain. These models are achieved by defining their
relevant concepts along with their relations.

Many efforts are proposed to represent knowledge in a
standardized way for robotics and automation field such as
Ontologies for Robotics and Automation Working Group
(ORA WG), sponsored by the IEEE Robotics & Automation
Society [2]. ORA WG has proposed the Core Ontology for
Robotics and Automation (CORA) [3]. It provides a con-
ceptual structure that can be used and integrated with other
specific ontologies developed for the robotics and automa-
tion domain. CORA is extended by integration of specific
ontologies such as [4], [5], [6], [7] that are used to describe
the robotic world from top-level ontological categorization to
the low-level information related the environments’ entities,
i.e. from the abstract concepts that describe the world, such
as the concept of object used to describe physical objects
in terms of names and functionality, to the position and
orientation of the physical objects. This standardized way of
representing knowledge facilitates the robot to reason about
the way of executing tasks.

Abundant studies have investigated the use of knowledge-
based reasoning approaches in planning. These approaches
define terminologies and the inference mechanism (way of
querying and reasoning over the knowledge) to facilitate the
planning process in many domains. For instance, [8], [9]
categorize knowledge about the world into terminological
knowledge (TBOX), and assertional knowledge (ABOX).
The former contains definitions of concepts, such as in-
teraction and action. These concepts and their relations
are arranged in a hierarchy. Whereas the latter contains
individuals that are instantiations of these concepts. In the
navigation area, some works such as [10], [11] use a metric
map and a topological map to define the robot environment.
The metric map is used for the geometrical representation
of the robot workspace in terms of free and occupied areas,
while the topological map is used to capture the topology of
the workspace. Moreover, In manipulation planning domain,
works such as [12], propose an ontological framework to or-
ganize the knowledge needed for physics-based manipulation
planning, allowing to derive manipulation regions and behav-
iors. [13] propose ontologies that classify the knowledge into
manipulation world and manipulation planning. The former
is used to describe the robot environment, while the latter
is used to facilitate the planning process, by retrieving the
information about the manipulation world.

B. Motion planning

Motion planning problem deals with computing collision-
free trajectory to move a robot from the start to the goal
state in the configuration space. To plan in higher dimen-
sional configuration spaces, sampling-based motion planning
algorithms such as RRT [14] and KPIECE [15] are proposed.
These algorithms do not required the explicit representation
of the obstacles in the configuration space and plan efficiently
for the systems with kinodynamic (geometric and differen-
tial) constraints. However these approaches focus on comput-

ing collision-free trajectory. Physics-based motion planning
has emerged as new class of planning algorithms that al-
lows purposeful manipulations of the objects by considering
dynamic interactions (robot-object and object-object) while
planning. The results of these dynamic interactions influence
the planning process. Physics-based planning approaches em-
ploy sampling-based motion planners for sampling the states
and constructing the solution path. Whereas physics engines
such as Open Dynamic Engine (ODE-http://www.ode.org/) are
used for the state propagation that takes care of kinodynamic
and physics-based constraints.

Physics-based motion planning is computationally inten-
sive due to the higher dimensional state space, large plan-
ning search space and highly constraint solution set. A
few approaches are proposed to overcome these challeng-
ing issues. For instance, to reduce the search space [16]
proposed Behavioral Kinodynamic RRTs that define non-
deterministic tactics using a finite state machine along with
skills to control the sampling. A hybrid approach is proposed
in [17] that integrates knowledge of the robot’s workspace
(represented in the form of ontologies) with physics-based
motion planning. The knowledge-based reasoning process
is used to reduce the planning search space and to guide
the motion planner by defining the manipulation constraints
(that determine the way of manipulation) to interact with the
objects in the robot’s workspace. RRT and KPIECE are used
as kinodynamic motion planners and state propagation is
performed using ODE. This approach is extended in [13] by
incorporating low-level geometric reasoning that determines
the appropriate bounds for sampling controls in order to
obtain a power-efficient solution. This geometric reasoning
process determines whether the robot is in contact with an
object(s) or moving freely, and in case of interaction, the
control bounds are computed according to the properties of
the target object.

C. Task planning

There are various approaches in Artificial Intelligence (AI)
planning based on different search strategies that have been
popular among robotics researchers.

Search can be done in the plan space, like the GRAPH-
PLAN task planner [18], which uses the Planning Graph
technique that interleaves state-levels (representing a set
of facts) and action-levels (representing a set of actions
whose preconditions are satisfied in the previous state level,
including maintenance actions that keep literals unchanged
for the next level). Mutual exclusion relations among actions
and facts may exist in the Planning Graph. The search space
procedure that builds the planning graph continues until all
the goal conditions appear in the last state-level. A plan
is then looked for by backtracking from the last state-level
towards the initial one taking into account mutual exclusions.

Alternatively, search can be done in state space. In this
direction, one of the most efficient task planning approaches
is the FastForward (FF) [19], which performs a heuristic
search. This is the task planner used in this paper. It has two
main components: the Enforced Hill Climbing (EHC) module



devoted to select the more promising successor state using
the heuristic values, and the Relaxed GRAPHPLAN module
that computes the heuristic value in terms of the estimated
number of actions. This later module also computes the set of
helpful actions (i.e. those actions that executed from that state
have a high probability of being in the solution plan), which
allows making the exploration more efficient. The Relaxed
GRAPHPLAN module is based on a relaxed version of the
Planning Graph. The relaxed version of the Planning Graph
(called RPG) ignores the delete lists of the actions, so mutual
exclusion relations do not take effect in the planning phase.
From tthe RPG, the relaxed plan is computed including the
sequence of cheapest actions connecting the initial state to
the final one. The heuristic value is then computed as the
number of actions in the relaxed plan, and the helpful actions
are those actions of the RPG that appear in the first action
level. If EHC fails, everything done so far is skipped and the
FF restarts considering Best-First Search (BFS).

Another technique, called hierarchical-based planning, de-
composes tasks into sub-tasks and grow in a search space.
Searching is performed till all sub-task conditions are met
by achieving a set of executable actions, being the depen-
dency among actions modeled by means of networks called
Hierarchical Task Networks (HTN) [20].

D. Combining task and motion planning

With the aim of finding a feasible plan to solve a given
task, different approaches have dealt with various strategies
to combine task and motion planning (TAMP), depending on
the task planning algorithms used.

Planning Graph-based TAMP. Variants of the Graph Plan
have been proposed in [21], [22] to retrieve alternative plans
that are later evaluated using a physics-based motion planner,
and applied to a manipulation problem of a mobile robot that
is able to push and pull movable objects. These approaches
can be computationally expensive in terms of the number
of calls to motion planning as they need to evaluate many
actions.

FF-based TAMP. The study in [23] proposed an inter-
leaved search at the symbolic and geometric levels, where
a PRMs motion planner calls the FF task planner to guide
roadmap sampling. The approach computes the heuristic
value based on the symbolic distance to goal, thus the
heuristic function is not informed in terms of geometric
information. On the contrary, the work in [24] proposed an
approach, called FFRob, that when computing the heuris-
tics analyses the action feasibility by using a Conditional
Reachability Graph (CRG) based on a version of PRM
planner, i.e. using geometric information. In an analogous
way, the study in [25] also considers geometric information
when computing the heuristics. In the NAMO problem of
a mobile robot, during the RPG construction, the method
calls a physics-based motion planner for those actions that
change the topology of the configuration space. To reduce
the number of calls to the motion planner, the current
study follows this line but only applies relaxed geometric
information in the heuristic computation.

Hierarchical-based TAMP. The work in [26] focuses on
a combination based on the HTN planner. It facilitates
backtracking at different levels, also including an interleaved
backtracking procedure. The work in [27] has addressed
an aggressively hierarchical approach that constrains the
abstract plan steps so that they are serializable (i.e. so that the
particular way that the first step is carried out does not make
it impossible to carry out subsequent steps), and handles the
integration by operating on detailed, continuous geometric
representations.

III. PROPOSED FRAMEWORK OVERVIEW

Let consider a bi-manual robot able to manipulate objects
on its working table, i.e. a robot with the capacity to pick
objects (from different grasping configurations) and place
them (at different placement regions like shelves, trays or
intermediate zones), and also with the capacity to push them
(from anywhere or interacting with them through some of
their parts). Many objects of different shapes and physical
features may be present in the scene. Different tasks may
be defined in this scenario, ranging from the grasping of an
object in a cluttered scenario to the rearrangement of some
of the objects. Several challenges must be faced in order to
find a feasible sequence of actions to fulfill the task. These
challenges include the detection of blocking objects, the se-
lection of grasps that are kinematically feasible and collision-
free for the combined pick and place actions, the finding of
object placement taking into account reachability issues and
the possible limited space, and the search for collision-free
movements of the robot either alone or transferring an object,
among others.

To cope with these type of problems and challenges, we
propose a framework based on three main parts:

• Ontologies for manipulation: A formalization of the
manipulation knowledge as an ontology framework that
includes information about objects, robots, sensors and
actions, the workspace and the context, as well as an
inference mechanism for reasoning over this knowledge.

• Motion planning for grasping: A physics-based motion
planner able to interact with movable obstacles to
smartly move away those blocking the target object, and
thus allowing simple and efficient grasp-in-the-clutter
tasks.

• Manipulation planning: A heuristic task planner based
on the Fast Forward method with an heuristic to guide
the search based on geometric reasoning processes on
symbolic literals to determine the actions feasibility and
applicability.

IV. ONTOLOGIES FOR MANIPULATION

The framework1 presented in [12] to organize the knowl-
edge needed for physics-based manipulation planning by
automatically construct a semantic map to categorize the
objects into different types according to the objects and task
constraints. The framework has been proposed to deal with

1https://sir.upc.es/projects/ontologies/



autonomous and manipulation tasks by following, on the
one hand, some ideas of [10] and on the other hand, some
standardized common vocabulary that ORA WG proposes in
[6], [7]. Both are breifly described below.

The former is used to describe the concepts through the
use of a hierarchy of ontologies composed of three layers:
metaontology, ontology schema and ontology instance, as
shown in Fig. 1. Metaontology is used to represent generic
information, such as the concept of physical object. Ontology
schema is used for domain specific knowledge, for instance,
ontology layer contains the knowledge of a particular do-
main, such as kitchen. Ontology instance is used to store
the information of the particular objects, such as a given
bottle and its properties. These layers are composed of six
classes: Feature, Object, Actor, Space, Context, and Action.
Each of them has three gradual levels (except feature class
that has two [10]). Feature class represents the knowledge
related to the properties of the manipulation world such
as physical interaction parameters. Object class represents
the knowledge related to the physical objects and their
components such as a cup has handle and container. Actor
class represents the knowledge related to the robots and their
components. Space class represents the knowledge related
the robot workspace. Context class represents the knowledge
related to the situation based on space and time. Action class
represents the knowledge related to the planning processes
including motion and manipulation components.

The latter is used to cover the knowledge related to ma-
nipulation world, planning and data under the standardized
concepts. The manipulation environment knowledge includes
the description of objects and robots in the workspace. The
manipulation planning knowledge represents the part that is
responsible for reasoning about the situation of the objects
and the robot, and for planning the tasks. The manipulation
data knowledge represents the features of the environment
entities, such as color, mass, robot constraints (e.g joint
limits).

Fig. 1. Structure of the ontological layers metaontology, ontology schema
and ontology instance.

Because an ontology is an object-oriented and frame-based
language, the metaontology layer can provide a template
for the ontology schema layer to build terminology, while
the ontology instance layer can be defined as an individual
frame. The information of ontological classes, properties,
and instances is transferred with bidirectional reasoning in

the same knowledge layer. Whereas, unidirectional reasoning
relates several knowledge classes of different layers.

V. MOTION PLANNING FOR GRASPING

One of the challenging issue in Physics-based motion plan-
ning for grasping in unstructured and clutter environments
is to handle interactions (between robot-object and object-
object) in a robust way. These interactions are very difficult
to model accurately due to the several parameters involved
such as exact value of friction, interaction force direction and
pressure distribution under the object surface. The imprecise
modeling of such parameters give rise to the uncertainty in
the objects’ poses. This uncertainty is propagated from initial
state to the future states. The computed plan should be robust
enough to move the robot from a start to the goal state even
in the presence of such uncertainty.

We proposed an open-loop physics-based motion planning
approach [28], that computes the motion plan in such a
way that it absorbs the potential deviation in the objects’
poses (due to sensing and due to interactions). Based on
the KPIECE [15] planner, a robust tree-growing strategy
is proposed for the underlying sampling-based kinodynamic
motion planner. This strategy works in two phases that are;
motion sampling and belief computing phase. Once a state
is selected from where the tree will grow, the motion sam-
pling phase samples n random controls and time durations
to generate n motions by applying the sampled controls
for the sampled durations. No uncertainty is considered in
the system during this phase. Whereas, belief computing
phase considers uncertainty into the system and repeatedly
apply the sampled controls for the sampled durations. The
probability of valid resultant states describes the belief of
the corresponding motion. These belief values are then
associated with the corresponding motions and influence the
tree-growing process. The motions that have high belief are
preferred to grow the tree.

Three sources of uncertainty are introduced during the be-
lief computation phase that are: uncertainty in the interaction
parameters, uncertainty in the objects’ poses and uncertainty
in the robot controls. Since a physics-engine is used as
state propagation, the interaction parameters of the physics-
engine (such as in case of ODE, friction and constraint force
mixing, error reduction parameter and bounce velocity) are
approximated and Gaussian noise is introduced around the
approximated values. The initial pose uncertainty is modeled
using multivariate Gaussian distribution. Whereas, as a result
of interactions (in the presence of uncertainty) the resultant
poses of the objects may vary significantly, the uncertainty
in the object poses is multi model and it is computed using
a Gaussian mixture model. The uncertainty in the controls
is modeled as zero mean multivariate Gaussian distribution.

The proposed method has been successfully tested in
simulation and real experiments with both a Kuka LWR
robot and a YuMi robot, in cluttered scenes with different
daily objects like cans (Fig 2). The method is currently being
extended to consider different goals determined by different
ways to grasp the object.
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Fig. 2. A grasp-in-the-clutter task executed with the YuMi robot using the
proposed physics-based motion planner.

VI. MANIPULATION PLANNING

The proposed simultaneous task and motion planner,
K-TMP, extends the basic FF planner in order to consider
geometric and manipulation knowledge information while
planning. It consists of three main parts: Heuristic Compu-
tation, State Space Search, and Action Selection Process.

The Heuristic Computation gets a state and returns the
heuristic value and a set of helpful actions. The standard
RPG is first constructed and the relaxed plan is extracted.
The actions of this relaxed plan are then forwarded to the
relaxed geometric reasoning. The reasoning process (without
calling motion planner) tries to find valid configurations for
pre-gasping poses and, if required, proper locations for object
placements. Information regarding the grasping poses and
regions to place objects is retrieved from the knowledge, as
well as information to know, for instance, the feasibility of a
push action taking into account the object’s physical features
and the robot capacity If the relaxed plan is feasible, then
the heuristic value along the helpful actions are returned. In
the case of failure, the reason is identified and fed back to
the state (like a blocking obstacle), and an alternative relaxed
plan is looked for. The reasoning process makes the heuristic
more informed in terms of geometry information.

The State Space Search includes the search component
that comprises two algorithms, the Enchanced Hill Climbing
(EHC) and the Bes First Search (BFS), as the standard FF
has. From each state, the search module selects the best
action, resulting in a state which has a lower heuristic value
in terms of geometry and symbolic information.

The The Action Selection Process tries to find a motion
for a given action. The action chosen by the state space
search is parametrized by setting a query and forwarded to a
motion planner in order to compute a path. For the transit and
transfer actions, a geometric motion planner is used to find a
collision-free path; for push actions, a physics-based motion
planner is applied. If motion planning fails, the current state
is updated with the failure reason and the search restarts.
Otherwise the action is stored in the plan.

The proposal has been successfully applied to a table-top

Fig. 3. A table-top manipulation task executed with the YuMi robot using
the proposed task and motion planner.

Fig. 4. Implementation framework: components and communications.

problem executed by the YuMi bimanual robot (Fig 3). The
task requires the removing of several blocking objects, the
carefully selection of grasps, the arm to be used for each
action, the IK solutions chosen, and the selection of the goal
ordering.

VII. FRAMEWORK IMPLEMENTATION

The proposed framework implementation consists of three
main phases: task planning, motion planning, and knowledge
processing. Task planning is implemented using a modified
version of the FF planner developed based on the C++
language that incorporates geometric information, motion
planning and knowledge processing. Motion planning is done
using The Kautham Project2 [29] which is a C++ based
open-source tool for motion planning, that enables to plan
under geometric and kinodynamic constraints. It uses the
Open Motion Planning Library (OMPL) [30] as a core set
of sampling-based planning algorithms. In this work, the
RRT-Connect motion planner and KPIECE are used for
geometric and physics-based motion planning respectively.
For the computation of IK module, the approach developed
by [31] has been used. Regarding the knowledge processing,
the knowledge is coded by the Protege editor and the
reasoning process is done using the Prolog language. The
communication between all modules modules is done via
Robotic Operating System (ROS) [32].

VIII. RESULTS AND DISCUSSION

Can we pose a problem that highlights the whole frame-
work???

This paper has highlighted the use of knowledge in both
task and motion planning levels, and has demonstrated
a smart combination between them, allowing an efficient
performance in table-top manipulation tasks where there
are blocking objects, the correct selection of grasps and
placements is critical and the feasibility of actions needs

2https://sir.upc.edu/projects/kautham/



to be analyzed. The use of a physics-based motion planner
has allowed the consideration of push actions as well as the
possibility to permit interactions with obstacles. This allows
to efficiently execute grasping motions in cluttered scenarios,
by avoiding the need of explicitly computing the removal of
obstructing objects and just relying in pushing them away.
Knowledge has been used to describe the scene, to determine
how objects have to be manipulated and define the actions the
robot is able to execute. We claim that a formal description
of the manipulation knowledge as an ontological framework
gives versatility and flexibility to the robots, further enhanced
by following the IEEE robot ontology standards.

Some of the future work directions are the following:
• To test the proposal with more challenging problems

requiring larger task spaces.
• To include sensing actions and extending task planning

by using the contingent Fast Forward method.
• To consider simultaneous grasp and motion planning

strategies in order not to rely on a predefined set of
grasping configurations.

• To consider uncertainty at task level by using the
probabilistic Fast Forward method.
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