
A Tool for Knowledge-oriented Physics-based Motion
Planning and Simulation

Muhayyuddin1, Aliakbar Akbari1, Jan Rosell1?, and Wajahat Mahmood Qazi2

1 Institute of Industrial and Control Engineering,
Universitat Politècnica de Catalunya, Barcelona, Spain,

{muhayyuddin.gillani,aliakbar.akbari,jan.rosell}@upc.edu
2 Department of Computer Science,

COMSATS Institute of Information Technology, Lahore, Pakistan,
wmqazi@ciitlahore.edu.pk

Abstract. The recent advancements in robotic systems set new challenges for
robotic simulation software, particularly for planning. It requires the realistic be-
havior of the robots and the objects in the simulation environment by incorporat-
ing their dynamics. Furthermore, it requires the capability of reasoning about the
action effects. To cope with these challenges, this study proposes an open-source
simulation tool for knowledge-oriented physics-based motion planning by ex-
tending The Kautham Project, a C++ based open-source simulation tool for mo-
tion planning. The proposed simulation tool provides a flexible way to incorporate
the physics, knowledge and reasoning in planning process. Moreover, it provides
ROS-based interface to handle the manipulation actions (such as push/pull) and
an easy way to communicate with the real robots.

1 Introduction

Planning and simulation play an important role in robotics research. These are essential
tools for the development of strategies and algorithms in various areas of robotics such
as motion planning, grasping and manipulation. Moreover, these tools allow to demon-
strate the proposed strategies under different environmental conditions and constraints.
The existing software for robotics can be classified into two categories single domain
and multi domain software. The former are designed to address the problem in a specific
domain of robotics. For instance, GraspitIt! [1] is developed to study the grasp planning
problems, while MoveIt! [2], Robotic Library [3] and OpenRave [4] are used to study
the motion planning issues. On the contrary, the latter are designed in a generalized
way to study the multiple domain problems, such as Simox [5] that is designed to study
motion planning and grasping or The kautham Project [6] that is used to study task and
motion planning.

To capture the realistic behavior in simulation, it is required to incorporate the dy-
namics of the robot and the environment. Simulation of dynamics is a challenging task
due to the fact that robotic systems are nonlinear in nature and due to the difficulty in

? This work was partially supported by the Spanish Government through the projects
DPI2013-40882-P, DPI2014-57757-R and DPI2016-80077-R.



2 Muhayyuddin, A. Akbari, J. Rosell, W. M. Qazi

determining the exact values of the parameters involved (such as forces that are acting
on the system). To handle these issues the use of physics engines (such as ODE [7]
and Bullet [8] ) in robotic simulations (of single and multi domains) is becoming pop-
ular. These engines provide a good approximation of rigid body dynamics. Moreover,
physics engines are also used to develop the dynamic simulators (such as Gazebo [9])
which provide a dynamic simulation environment for robotics. Beside the core robotic
software, various middle-ware frameworks (such as ROS [10] and OROCOS [11]) are
proposed to manage the communication between simulation and robot hardware. These
middle-wares help greatly to simplify interprocess communications and synchroniza-
tion issues.

The increasing complexity in the robotic systems such as collaborative robots (new
generation of industrial robots) and humanoid robots set new challenges for robotic
software. These challenges involve the rich semantic description of the environment for
understanding of the scene, the incorporation of dynamics in planning, the capability
of reasoning about the performed actions, and computational efficiency. It is difficult
to find a software that addresses all these challenging issues. The current study con-
tributes along this line and proposes a simulation framework for knowledge-oriented
physics-based motion planning. The current proposal extends The Kautham Project by
integrating the ontological knowledge, reasoning and physics in the planning process.

The rest of the paper is structured as follows. The Proposed framework is explained
in Sec. 2. It involves the summary of the dependencies of the proposed simulation
framework, a brief overview of The Kautham Project, implementation details of in-
corporating physics, knowledge and reasoning in planning process. Finally Sec. 3 con-
cludes the study.

2 Knowledge-Oriented Physics-based Planning Framework

The proposed framework (Fig. 1) is developed by extending The Kautham Project. This
section will briefly explain The Kautham Project and the implementation details of the
proposed extensions for incorporating knowledge, reasoning and physics in planning.

2.1 Dependencies

The robotic simulation software depends on several concepts such as robot modeling,
3D rendering and collision checking. It is difficult to develop a standalone application
from scratch and therefore, in order to incorporate such features, usually already exist-
ing libraries are used. The major dependencies of Knowledge-oriented physics-based
planning framework are those of The Kautham Project. It is developed using C++ and
uses many features of C++11 such as std features. It uses the CMake (www.cmake.org)
build system and it is available under GIT (git-scm.com) version control system, can be
download from sir.upc.ed/kautham. The GUI is designed in Qt (qt-project.org), 3D ren-
dering is performed using Coin3D (www.coin3d.org). Robots and obstacles are defined
using the Unified Robotic Description Format (URDF, http://wiki.ros.org/urdf), and the
Eigen library (http://eigen.tuxfamily.org/) is used for linear algebra. The Open Motion
Planning library (OMPL [12]) is used as planning core. It provides various sampling
based motion planners such as RRT [13], PRM [14] and KPIECE [15]. Moreover, it



A Tool for Knowledge-oriented Physics-based Motion Planning and Simulation 3

Fig. 1: Simulation framework for knowledge-oriented physics-based motion planning.

also provides the capability of planning in state space where ODE is used as state propa-
gator. The current proposal enhances the use of ODE in planning process to incorporate
physics using Knowledge-based reasoning. The knowledge is represented using Web
Ontology Language (OWL [16]) and the Prolog language (http://www.swi-prolog.org/)
is used for the reasoning over knowledge.

2.2 The Kautham Project

The Kautham Project is a C++ based open-source software for motion planning. It is
used for teaching and research purposes at Institute of Industrial and Control Engineer-
ing (IOC-UPC). For research, it is used to develop and demonstrate the motion planning
algorithms, particularly for mobile and dexterous manipulators (arms equipped with an-
thromorphic hands and a mobile base).

Modeling: A motion planning problem is described using an XML file (Fig. 2). It
consists of four components: robot model, object model, controls and planner. The main
parameters that are specified for robots/objects are the path to the corresponding model,
translation limits (in case of mobile base) and initial position with respect to the world
frame. Controls are used to define the way how the degree-of-freedoms (dof) will be
actuated. In the simplest case, one control per dof is considered. Controls can also be
specified for obstacles (detailed explanation of controls can be found in [6]). The final
part of the problem XML file specifies the name of the planner used (such as RRT), the
planning parameters (such as planning time and goal bias) and the query that contains
the start and the goal configuration.



4 Muhayyuddin, A. Akbari, J. Rosell, W. M. Qazi

(a) (b)

Fig. 2: (a) an example of a problem file. (b) an example of a control file.

A robot is defined as a kinematic tree with optional mobile base and represented as
R = SE(3) × Rn, where n represents the dof of the robot. In case of fixed base, the
SE(3) part is represented as null. The kinematic structure of the robot is defined using
URDF (Fig. 3). It contains the visual robot model, the collision model, transformations
between the links, joints (along with limits) and dynamic parameters such as damping
and masses. The visualization model is defined with triangular meshes that can be rep-
resented in .wrl, .stl and .dae format. The collision model can be represented either by
a triangular mesh or by primitive shapes (cylinder, box and sphere). Obstacles are also
defined as robot data structures, in case of fixed obstacles, none of its dof are actuated.

Kautham-core: It consists of the workspace, the configuration space and a set of plan-
ners. Once a problem is loaded, it fills the data structures of the workspace (that includes
the robot/obstacle models, their kinematic limits), and of the configuration space. More-
over, it contains the methods for collision check using PQP [17] or FCL [18] and for-
ward kinematics to move the robot to the particular configuration. The configuration
space is represented as C = Cb×Cq where Cb represents SE(3) or NULL and Cq repre-
sents Rn. To sample in C various state samplers (such as random, Gaussian and Halton)
are implemented.

Two families of planning algorithms are implemented in The Kautham Project, IOC
planners and OMPL planners. The former contains potential field-based planners using
navigation function [19] and harmonic function [20]. The latter contains the sampling-
based geometric and kinodynamic planners (such as RRT, PRM and EST) offered by
OMPL. The detail explanation regarding the implementation of planners can be found
here https://sir.upc.edu/projects/kautham/.



A Tool for Knowledge-oriented Physics-based Motion Planning and Simulation 5

(a) (b)

Fig. 3: (a) a part of the URDF file of the robot. (b) the URDF model of the table

2.3 Physics-Based Planning

Physics-based motion planners has recently emerged as an extension to the kinody-
namic motion planners, in which the robot can interact with the objects in the envi-
ronment for the purposeful manipulation. These interactions are modeled using rigid-
body dynamics. The tree-based kinodynamic motion planners can easily be extended for
physics-based planning by replacing the state propagator with dynamic engines (such as
ODE). Moreover, the extension requires proper definition of the state validity checker,
the contact dynamics and the control space.

To enable the physics-based planning, ODE is used to handle the rigid body dynam-
ics during propagation. It is an open-source C++ based dynamic engine widely used in
the robotics community. Moreover, OMPL provides the flexible way of using ODE as
state propagator. We read the robot(s) and object(s) and their properties (such as masses)
and create ODE bodies using triangular meshes, although in case of simple shapes (such
as box, sphere or cylinder), it is also possible to create ODE bodies using primitive
shapes. The kinematic tree that represents the robot in the dynamic world is created by
adding the joints between the robot bodies. A motor (linear or angular, depending on
the joint type) is added to each joint to control the joint velocities and torques. Once
the ODE world is created, a dynamic environment class (with the name of the robot,
such as YumiDynamicEnviroment) is derived from the OpenDEEnvironment class pro-
vided by OMPL. The derived class reimplementes the functions by defining the control
dimensions, control bounds, the way of applying controls, the contact parameters (such
as friction, slip, bounce velocity) and the way of evaluating the collisions.

The control dimensions are set equal to the number of actuated degree-of-freedoms
and the control bounds define the control (velocity or torque) limits for each joint. A
method is indeed to define the way of applying the controls. The controls can be joint
velocities with the maximum allowed torque limits (that a motor can exert to achieve the



6 Muhayyuddin, A. Akbari, J. Rosell, W. M. Qazi

desired velocity). Contact parameters are defined between each pair of bodies in contact,
describing the interactions. For instance, when an interaction takes place between two
bodies, these parameters define how many contact points must be considered, what
is the value of friction coefficient, what is the bounce velocity, what is the constraint
force mixing (CFM) and the error reduction parameter (ERP). CFM and ERP are ODE
parameters that model the damping and spring behavior). These contact parameters
must be defined carefully because inappropriate values may results unstable behaviors.

Since physics-based planning allows the dynamic interactions in planning, the way
of evaluating collision will be modified. Collisions with fixed objects will be forbid-
den, but collision with movable objects will be allowed, although collision with some
movable object is be allowed only from certain parts. For instance, the collision with
a car-like object is allowed only from the front or rear side and forbidden along the
sides. The differentiation of the objects according to their collision properties is a chal-
lenging issue. It is handled by incorporating the contact constraints in the knowledge
as explained in Sec. 2.4. The state validity checker will evaluate the satisfaction of the
constraints that are imposed by the knowledge.

The state space of each body (robot link or obstacle) in a dynamic environment is
12 dimensional (3 for position, 3 for orientation, 3 for linear velocity and 3 for angu-
lar velocity). It is represented as an OMPL OpenDEStatepace that is a compound state
space with 3 real vector spaces and one SO(3) space for orientation. The state space
implements the distance function to measure the distance between two states. The pro-
posed framework provides two implementations of distance function that measure the
distance in the workspace and in the configuration space. To measure the former, the po-
sition of the TCP is projected in the workspace and the Cartesian distance is measured
there. Whereas the latter measures the distance between two configurations. Moreover,
the state space generator also provides the pointer to the projection used. Currently
two methods of projection are implemented, besides the random projections offered
by OMPL. One projects the position of end effector in the workspace, and the other
projects the first three joints of the manipulator in a three dimensional space.

The control space implements the way of sampling the controls. Since physics-
based planning is computationally intensive, the complexity can be reduced by imple-
menting the robust control sampling strategies. The current implementation provides
the random control sampler, heuristic-based control sampler and power-efficient con-
trol sampler. The heuristic-based control sampler samples n controls and select the one
that has shortest distance to the goal state. The power-efficient control sampler adapts
the control sampling strategies according to the region of the state space. If the robot
is in contact with an object the sampling strategy computes the minimum force that is
required to push the target object and sample the controls accordingly.

All control-based planners offered by OMPL can be used for knowledge-oriented
physics-based planning. For every planner we need to set a pointer to the defined dy-
namic environment, state space and control space. The planners such as RRT, KPIECE,
EST, SyCLoP are already available for planning. Other planners such as SST can be
incorporated easily.



A Tool for Knowledge-oriented Physics-based Motion Planning and Simulation 7

(a) (b)

(c)

Fig. 4: Examples of Prolog predicates, (a) represents the predicate for the object properties, (b)
describes the predicate for the object data properties. (c) describes the predicate for reasoning
over the object types.

2.4 Knowledge Representation and Reasoning

The knowledge is represented with ontologies using OWL, which is a formal way of
representing knowledge in term of classes. These classes contain information about the
robot (robot kinematic and dynamic properties) and about the environment (the objects
and their relationship with each other). The relation among classes is defined based
on axiom. The axioms are facts that are used for conceptual understanding. We used
the protégé editor (http://protege.stanford.edu/) to formulate ontologies (web address
to the developed ontologies: https://sir.upc.edu/projects/ontologies/). Domain specific
ontologies can be easily defined to handle other planning domain problems, such as
task planning.

To enhance the planning process with knowledge, the knowledge is fetched from
the ontologies and stored in instantiated knowledge. The instantiated knowledge is a
low-level representation of knowledge that contains the type of the objects, such as
manipulatable or fixed, and their contact constraints. These constraints are modeled by
specifying regions around the objects, such that the robot can interact with the objects
only from these regions. Moreover, other types of constraints can be introduced eas-
ily such as the manipulation constraints (constraints over orientation that robot has to
maintain during manipulation). The detailed explanation of instantiated knowledge can
be found in [21].

The reasoning module is defined in Prolog, which is a language of facts and rules
that defines predicates for the knowledge-based reasoning. The predicates are defined
in a file (with extension .pl). While creating the ODE world, the Prolog environment is
initialized and reads the knowledge from the OWL using predefined predicates. Some
examples of the Prolog predicates are shown in Fig. 4. The predicates to access ob-
ject and data properties are shown in Fig. 4-a and Fig. 4-b respectively. The predicate
find cont const(obj, ContConst) takes the name of ODE body (from ODE world) as in-
put and returns the associated contact constraints. find physical attribute(obj,Mass.Fric-



8 Muhayyuddin, A. Akbari, J. Rosell, W. M. Qazi

(a) (b)

(c) (d)

Fig. 5: Visualization of the robot motion with the Kautham-GUI

tion,GravEff) reads the physical properties of the bodies in the ODE world. The pred-
icate described in Fig. 4-c is an example of the reasoning over OWL for the object
classification. The predicate object classification(obj,objectType,Const) reasons about
the types of the object and classify them accordingly into the manipulatable and fixed
objects, along with their constraints (contact and manipulation). The Prolog predicates
fetch the knowledge from the ontologies and fills the data structures of the instantiated
knowledge that is used by the motion planner. According to the problem domain, more
predicates can be defined easily.

2.5 Visualization

The proposed framework uses the Kautham-GUI tool for the visualization of the scene.
It provides the visualization of the robot model, the collision model and the visual-
ization of the configuration space. The scene can also be visualized with DrawStuff
(OpenGL based ODE viewer). It provides the visualization of the collision model, the
actual robot/object model and the mesh views. Fig. 5 and Fig. 6 depict the visualiza-
tion using Kautham-GUI and DrawStuff respectively . The numerical results of a query
(such as path) can also be viewed using Kautham-Console that is a console-based inter-
face of The Kautham Project.

2.6 ROS Nodes

The Kautham Project provides a ROS based interface through a node called Kautham-
Node. It provides the services such as OpenProblem, SetQuery, Sovle and GetPath. The



A Tool for Knowledge-oriented Physics-based Motion Planning and Simulation 9

(a) (b) (c)

Fig. 6: Example scenes of the visualization of the triangular mesh view and the actual scene view
for different robots using DrawStuff

current proposal implements two further nodes, manipulation node and communication
manager for handling the manipulation queries and communicating with the real robot
or third party simulation environment, such as Gazebo.

Manipulation Node: The manipulation node extends the functionality of the Kautham
node. It is capable of handling the manipulation queries such as push or pull queries. A
manipulation query is defined by specifying a target object (that will be pushed or pulled
by robot), type of manipulation action (such as push, pull or move) and other planning
parameters (such as planning time) in response it returns the controls and durations that
are to be applied to move the robot from the start to the goal state by satisfying the
constraints.

Communication Manager: The communication manager is another ROS node that
manages the communication between the software and the real robot. It provides the
services to set the query for the manipulation node and sends the computed path to
the real robot via ROS/ROS Industrial and receives the feedback from the real robot,
such as joint states. Moreover, it also provides the communication between the planning
framework and Gazebo or Rviz (http://wiki.ros.org/rviz ) to visualize the computed path.

3 Conclusions

This study proposed a simulation tool for knowledge-oriented physics-based motion
planning by extending The Kautham Project. It provides an easy and reliable way to
incorporate the rigid- body dynamics and the knowledge-based reasoning (about the
action effects) in planning process. It also provides the manipulation node to easily
handle the manipulation queries (such as push/pull). The proposed simulation tool also
provides an easy way to communicate with real robot through the ROS based commu-
nication manager that manages the communication between the proposed tool and the
real robot.



10 Muhayyuddin, A. Akbari, J. Rosell, W. M. Qazi

References

1. Miller, A.T., Allen, P.K.: Graspit! a versatile simulator for robotic grasping. IEEE Robotics
& Automation Magazine 11(4) (2004) 110–122

2. Suçan, I.A., Chitta, S.: MoveIt! http://moveit.ros.org (2013)
3. Andre, G.: A software architecture for robot control and its application to social robotics,

Proc. of the IEEE Int. Conf. on Robotics and Automation: Workshop on Open Source Soft-
ware in Robotics (2011)

4. Diankov, R.: Automated Construction of Robotic Manipulation Programs. PhD thesis,
Carnegie Mellon University, Robotics Institute (August 2010)

5. Vahrenkamp, N., Kröhnert, M., Ulbrich, S., Asfour, T., Metta, G., Dillmann, R., Sandini,
G.: Simox: A robotics toolbox for simulation, motion and grasp planning. In: Intelligent
Autonomous Systems 12. Springer (2013) 585–594

6. Rosell, J., Pérez, A., Aliakbar, A., muhayyuddin, Palomo, L., Garcı́a, N., et al.: The kautham
project: A teaching and research tool for robot motion planning. In: Emerging Technology
and Factory Automation (ETFA), 2014 IEEE, IEEE (2014) 1–8

7. Russell, S.: Open dynamic engine. http://www.ode.org/ (2007)
8. Erwin, C.: Bullet physics library, http://bulletphysics.org (2013)
9. Gazebo: Gazebo. http://gazebosim.org/ (2014)

10. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.:
ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software.
Volume 3. (2009) 5

11. Bruyninckx, H., Soetens, P., Koninckx, B.: The real-time motion control core of the oro-
cos project. In: Robotics and Automation, 2003. Proceedings. ICRA. IEEE International
Conference on. Volume 2., IEEE (2003) 2766–2771

12. Şucan, I.A., Moll, M., Kavraki, L.E.: The Open Motion Planning Library. IEEE Robotics &
Automation Magazine 19 (2012) 72–82 http://ompl.kavrakilab.org.

13. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. The Int. Journal of
Robotics Research 20(5) (2001) 378–400

14. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE transactions on Robotics and Au-
tomation 12(4) (1996) 566–580

15. Sucan, I., Kavraki, L.E.: A sampling-based tree planner for systems with complex dynamics.
IEEE Transactions on Robotics 28(1) (2012) 116–131

16. Antoniou, G., van Harmelen, F.: Web Ontology Language: OWL. In Staab, S., Studer, R.,
eds.: Handbook on Ontologies in Information Systems, Springer-Verlag (2003) 67–92

17. Gottschalk, S., Lin, M., Manocha, D., Larsen, E.: Pqp–the proximity query package.
http://gamma.cs.unc.edu/SSV/ (1999)

18. Pan, J., Chitta, S., Manocha, D.: Fcl: A general purpose library for collision and proximity
queries. In: Robotics and Automation (ICRA), 2012 IEEE International Conference on,
IEEE (2012) 3859–3866

19. Barraquand, J., Langlois, B., Latombe, J.C.: Numerical potential field techniques for robot
path planning. IEEE Transactions on Systems, Man, and Cybernetics 22(2) (1992) 224–241

20. Connolly, C.I., Grupen, R.A.: The applications of harmonic functions to robotics. Journal of
Robotic Systems 10(7) (1993) 931–946

21. Muhayyuddin, Akbari, A., Rosell, J.: Ontological physics-based motion planning for manip-
ulation. In: Proc. of the IEEE International Conference on Emerging Technologies Factory
Automation (ETFA). (Sept 2015) 1–7


