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Task-Dependent Synergies for Motion Planning

of an Anthropomorphic Dual-Arm System

Néstor Garcı́a, Raúl Suárez and Jan Rosell

Abstract—The paper deals with the problem of motion planning
for anthropomorphic dual-arm robots. It introduces a measure of the

similarity of the movements needed to solve two given tasks. Planning

using this measure to select proper arm synergies for a given task

improves the planning performance and the resulting plan.

Index Terms—Path Planning for Manipulators, Humanoid Robots,

Synergies, Dimensionality Reduction.

I. INTRODUCTION

Current technology has allowed the development of anthropomor-

phic robots with the capacity to perform movements that mimic

human ones, but, nevertheless, the complexity of planning useful

movements for some given tasks within a reasonable time and

preserving the human appearance is still an open field of research. The

problem of motion planning in robotics was addressed with different

approaches [1], and, currently, among the most used planners for

systems with high number of degrees of freedom (DOF) are the

sampling-based planners [2] like, for instance, the Probabilistic Road

Map planners (PRM) [3] or the Rapidly-exploring Random Trees

planners (RRT) [4].

When the robotic system is anthropomorphic, the use of real

movements of a human being as a reference is common, either with

the goal of a direct on-line teleoperation of the robotics arms [5], or

with the aim of analyzing them and getting some valuable information

to be applied later in the planning phase, allowing a lower planning

complexity and/or looking for more human-like movements. This

latter approach was especially applied in planning motions and grasp

configurations of anthropomorphic robotic hands, which are devices

with many DOF (typical anthropomorphic robotic hands have four

or five fingers with three or four DOF per finger). The basic idea is

to establish couplings between the DOF of the robotic hand fingers

equivalent to those existing in the human hand. Relevant pioneering

works dealt with the grasping problem, analyzing the correlations of

finger joints when the hand was grasping an object, and called them

“hand postural synergies” [6]. Other works used the same concept

to find pre-grasp hand configurations [7], and called “eigengrasp” to

each independent hand movement involving correlated movements

of all the joints. These works allowed a reduction of the grasp

space down to a 2-dimensional space. Later, a compliant model for

synergies, called “soft synergies”, was introduced and used in the

selection of grasping forces, in their control, and in the control of

the motion of the grasped object [8], [9]. The main motivation of

these works was the grasp synthesis, but there were also works using

the same concept to do motion planning trying to mimic human

hand postures [10], [11], in this case the correlations between the

finger joints were used to determine movement directions so they

were called “principal motion directions” (PMDs). As a difference

with grasp synthesis, motion planning requires the knowledge of the

finger correlations when the fingers are freely moved in the hand

workspace without external constraints [12].

The previous discussion on the use of hand synergies to reduce the

motion-planning complexity as well as to look for robot movements
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that mimic the human ones, is relevant here because the goal of

this work is the use of similar concepts applied to the motion

planning of an anthropomorphic dual-arm system. A certain degree

of coordination between the arms is required in almost all everyday

tasks [13], [14]. Whereas all the DOF of the arms may be indepen-

dently moved, some synergies exist when a human being performs a

task with both arms. Using these synergies to improve the dual-arm

motion planning is the goal of this work. The basic idea was presented

in [15], and it is extended here including an analysis of the synergies

associated to different tasks and the proposal of a new likeness index

to evaluate the similarity between two tasks based on the movements

done by the arms of a human operator to solve them. This is a first

attempt to define task families according to the used synergies and

employ them to improve the corresponding motion planning.

The paper is organized as follows. Section II presents the problem

statement and the contributions of this work. Section III describes the

determination of dual-arm synergies and their use in motion planning.

Section IV introduces the task likeness index, which is one of the

contributions of this work. Sections V describes the experimentation

related to the use of synergies, which is the base for the use of the

likeness index introduced in Section VI. Finally, Section VII presents

some conclusions and future work and an Appendix details several

formal proofs.

II. PROBLEM STATEMENT AND MAIN CONTRIBUTIONS

The problem to be solved is the motion planning of a dual-arm sys-

tem looking for a reduction of the planning complexity while trying to

mimic the movements that a human does to solve a given task. With

this aim, we use the synergies that exist in the dual-arm movements

when humans solve different tasks. These synergies are employed

to reduce the complexity of the planning phase through a reduction

of the dimension of the search space, adapting, when possible, the

search space to the task to be solved. Besides, the synergies obtained

from human demonstrations while solving different tasks are used to

establish an index of the similarity between two tasks. This allows

the determination of a task clustering or taxonomy that is useful to

optimize the planning phase, allowing a further improvement of the

planning process as well as an improvement of the planned motions.

The information obtained from the samples of the task executions

are used in this work to define an index that indicates the likeness

between two tasks, a larger likeness means that the movements to

perform the tasks are more similar. This opens new ways to further

improve the task planning process as well as the resulting plan itself.

The key idea is to determine clusters of similar tasks that can be

planned with the same set of synergies in an efficient way, while

another set of synergies would be better for some other tasks. This

paper presents an approach to advance in this direction. The key

points are:

1) Definition of the likeness between two tasks based on the

synergy information obtained from their executions by the

human operator. This will allow to classify or cluster the tasks

into subsets than can be solved with similar movements.

2) Use the concept of likeness between tasks to obtain better plans

for tasks that were not previously demonstrated. This is done

by looking for synergies from a demonstrated “similar” task

and use them to improve the planning procedure.

Although it is not in the scope of this work, the likeness index could

be also used to determine a complete task taxonomy according to the

movements done to solve the tasks.
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III. PRELIMINARIES

A. Determination of dual-arm synergies

The synergies of the dual-arm system can be processed in two

possible ways. On the one side, the information about the joints

of the human arms can be captured and directly used to look for

their synergies, this generates the real synergies of the human arms,

but then they must be mapped to the robotic dual-arm system in

a non-trivial way when the kinematic structures are not completely

equivalent (see an example in [16]). On the other side, the human

arm movements can be mapped first onto the robotic system using a

predefined mapping (e.g. [17]), so that when the human moves the

arms the movements are automatically mapped to the robotic system,

and then the synergies can be determined from the resulting values of

the mechanical joints. In this way the synergies are directly obtained

for the used robotic system in correspondence with the movements

done by the human operator. In this work we use the second option.

In order to obtain the dual-arm synergies, a Principal Component

Analysis (PCA) [18] is run over the set of obtained dual-arm config-

urations θi. The PCA identifies the directions where the samples

have larger dispersion and returns a new orthogonal basis of the

dual-arm configuration space. Each vector of this new basis has

length equal to the dispersion of the data along it and the vectors are

sorted by length in decreasing order (i.e. the first vector indicates the

direction with maximum dispersion of the samples). These vectors

are called Principal Motion Directions (PMDs) and represent the

arm synergies. In the rest of the paper synergies and PMDs are

used with equivalent meaning. This simple linear approximation is

enough to capture the subspace where the demonstrated motions lie.

It has also been demonstrated to be useful and capable of being

implemented by a real-time algorithm [19] or a drive mechanism [20].

However, nonlinear approaches to obtain synergies have been also

proposed, such as the Gaussian process latent variable model [21] or

the unsupervised kernel regression [22].

Different tasks are demonstrated by human operators and, for each

task, the corresponding synergy basis is computed, i.e. the set of

PMDs. Let:

• m be the dimension of the configuration space.

• σ = [σ1, . . . , σm] be the vector of eigenvalues from the PCA

ordered such that σj ≥ σj+1.

• U = [u1, . . . , um] be the matrix of eigenvectors from the PCA

ordered as the corresponding eigenvalues σj in σ.

• µ be the barycenter of the samples used in the PCA.

• Σ = UD2U⊺ be the covariance matrix of the samples used in

the PCA, where D is the diagonal matrix with the values of σ

in the diagonal.

Then, each task can be characterized by its synergy basis defined as

S = (µ, [σ1u1, . . . , σmum]).

B. Planning using synergies

Once the dual-arm synergies have been obtained they can be used

to reduce the dimension of the planning space, and therefore reduce

the complexity of the planning procedure.

Let B be the m-dimensional box in the configuration space that

contains the (100 − α)% of the normal multivariate distribution of

the samples used in the PCA to obtain the PMDs (typical value for

α is 5%). B is centered at µ, with each side j ∈ [1, m] aligned

with uj and with length 2λσj where λ =
√
2 erf −1(m

√
1− α ).

Also, let q ≤ m be the number of the first PMDs that makes the

accumulated variance be above a confidence level of (100 − β)%.

Then, the planning will be done in the q-dimensional subspace, called

PMD subspace Bq , spanned by the first q PMDs and interior to B.

Figure 1. Conceptual representation of the whole task configuration space,
and the PMD subspace Bq where the planner works with the start and goal
configurations (cs and cg) and their closest configurations in Bq (c′s and c

′
g).

Now, let cs ∈ Cs and cg ∈ Cg be respectively a start and a goal

configuration of a task to be carried out by the dual-arm system,

where Cs and Cg are the sets of collision-free configurations satisfying

the constraints affecting the poses of the objects grasped by the

hands at the initial and final states of the task, respectively. Now

let c = {cs, cg} be a motion planning query, composed of a start

and a goal configuration.

Then, once a manipulation task is defined, a large enough set of Nc

queries is selected from Cs and Cg , satisfying the following conditions

(see Fig. 1):

a) c is near the PMD subspace Bq used to solve the task,

i.e. the distances from cs and cg to the corresponding closest

configurations in Bq , c′s and c′g respectively, are below a given

threshold.

b) The configurations c′s and c′g as well as the rectilinear paths

in the configuration space connecting cs with c′s and cg with

c′g are collision-free.

Finally, a reduced set of nc samples is selected from the Nc sam-

pled queries. nc is an arbitrarily predefined number selected accor-

ding to the available computational capacity, and the selection is done

such that the selected samples are the closest ones to Bq . Then,

for each of the selected nc queries, an instance of a RRT-Connect

planner [4] is run in the PMD subspace to find a path between the con-

figurations c′s and c′g corresponding to the query configurations cs
and cg , respectively, as illustrated in Fig. 1. All the planner instances

run in parallel and once a solution path is found by one of them, the

motion planning is stopped and all the other threads are killed.

Planning in Bq is more efficient than doing it in the whole

configuration space, because on the one hand it is done in a lower

dimensional space and, on the other hand, less self-collision occur

(since a high percentage of the samples mapped from the human

motions lies there) [15].

IV. TASK LIKENESS

In this section we propose an index of the likeness between two

tasks using the synergy basis of each of them, i.e. the likeness

between two tasks A and B is defined as the likeness L(SA, SB)
between the corresponding synergy bases SA and SB .

Let NA and NB be the multivariate normal distributions represented

by each synergy basis SA and SB , respectively, i.e. for each task

Γ∈{A, B}

NΓ = N(µΓ,ΣΓ) = (2π)−
m
2 |ΣΓ|−

1

2e
−1

2
(x−µΓ)

⊺Σ−1

Γ
(x−µΓ) (1)

Then, the likeness index L(SA, SB) is defined as

L(SA, SB) =
ΦAB

ΦABmax

(2)
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Figure 2. Surface plots of two bivariate normal distributions NA and NB

(left), and their product (right), in both cases the top row is a perspective
view and the bottom row is a top view. The units of the axes are not specified
since they are irrelevant for this illustrative example.

where ΦAB is a measure of the overlap between NA and NB all

over the entire m-dimensional configuration space, and ΦABmax is

the upper bound value of ΦAB . Then, L(SA, SB) ∈ [0, 1] with

L(SA, SB) = 1 representing the maximum likeness, i.e. the tasks A

and B could actually be the same task.

ΦAB is defined as the integral of the product of NA and NB over

the entire space

ΦAB =

∫ ∞

−∞

· · ·
∫ ∞

−∞

NANB dx (3)

In practice, ΦAB can be computed as (see the Appendix for the proof)

ΦAB =
e−

1

2
(µA−µB)⊺(ΣA+ΣB)−1(µA−µB)

√
(2π)m|ΣA+ΣB |

(4)

with the components (µAj−µBj ) expressed in the range [−π, π).
Note that since µAj and µBj are in the range [−π, π), the simple

signed difference angle between them could lie outside this range.

ΦAB has the following bounds (see the Appendix for the proof)

0 < ΦAB ≤ ΦABmax =
(
π

m
2

∏m

j=1(σAj+ σBj )
)−1

(5)

with σAj and σBj being the j-th eigenvalue of the synergies SA and

SB respectively.

Fig. 2 shows an example of two bivariate normal distributions

NA and NB and the result of their product NANB . The volume

beneath the surface defined by NANB is the value of ΦAB . It is

worth remarking that the product NANB is a normal distribution

multiplied by a scale factor (see the Appendix for the proof).

V. PLANNING USING SYNERGIES:

IMPLEMENTATION AND DISCUSSION

A. Experimental setup

The main elements used in the experimentation are (Fig. 3):

• A robotic dual-arm system composed of two industrial robot

arms UR5 from Universal Robots with 6 DOF each one, which

are assembled emulating the human arm configuration. Each

robot arm is equipped with an Allegro Hand from Simlab with

16 DOF (three fingers and a thumb with four independent joints

each one).

• Two sensorized gloves CyberGlove, used to capture the orien-

tations of the human operator hands. Each glove provides 22

joint-angle measurements: three flexion sensors per finger, four

abduction sensors between the fingers, a palm-arch sensor and

two sensors to measure the flexion and abduction of the wrist.

These two last sensors are the only ones used in this work.

• Two magnetic wrist trackers Fastrak from Polhemus, used to

capture the 6 DOF position and orientation of each user wrist

referenced to the global frame.

Figure 3. Dual-Arm system (top) and measurement equipment used to cap-
ture the movements of the human operator (bottom). The used transformations
related to the robot, the gloves and the trackers are represented with arrows.

• A simulation tool, called The Kautham Project [23], with ca-

pabilities for collision detection, motion planning and graphical

visualization of the whole system.

B. Demonstration tasks

The three following tasks were selected to illustrate the proposed

approach (Fig. 4):

• An Assembly task in which the human operator must grasp a

cylindrical box and a soda can, and then move them to a pre-

assembly pose that allows the insertion of the can into the box.

• A Pouring task in which the human operator must grasp a glass

and a soda can, and then pour the drink into the grasped glass.

• A Box task in which the human operator must grasp a cube and

open a box, and then introduce the cube into the box.

Besides, looking for a general and practical application of the

approach, we also capture the movements and obtain the PMDs when

the operator freely moves both arms and hands in an unconstrained

way (i.e. without performing any specific task) trying to cover the

whole natural workspace in front of the body, we will refer to this

as a Free-movement task. The task is finished when the operator

considers that (s)he has covered the whole workspace. There is no

guarantee that the operator actually covers the whole workspace,

but it is expected that (s)he performs his most natural and evident

movements.

Each of these four tasks was executed 10 times by 3 human

operators using the arms without moving the rest of the body,

generating representative sets of more than 10,000 samples per task.

Pictures of the task goal were shown to the operators to instruct them.

The initial positions of the objects were randomly located in given

areas of the table, and the final goal positions were those where

the operator comfortably execute the task in a natural way. This

gives variability to the data while preserving the essence of the task

motions.

C. Task synergies

In order to capture the movements of the operator arms, all the

sensors are synchronized to take samples at the same time with

a rate of 50 Hz. Each sample contains a translation vector and a

rotation quaternion read from each Fastrak tracker, 22 measurements
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a)

b)

c)

Figure 4. Human operator performing the demonstrations tasks while wearing
the measurement equipment: a) Assembly task, b) Pouring task, c) Box task.
The left and right columns show, respectively, examples of the start and goal
configurations.

describing the positions of the finger joints and the hand orientation

(flexion and abduction) read from each glove, a sample identification

number, and the time in which it was captured. Nevertheless, from

the information provided by the gloves only the values describing

each hand orientation are actually used in this work. Therefore, each

sample si obtained from the demonstrations has 16 independent

measurements, six for the pose of each wrist and two for the

orientation of each hand.

Once the samples si from the human movements have been

captured, they are mapped to the robotic system. This mapping

depends on the kinematic structure and particularities of the used

robotic system. In this work, we simply consider the samples as

being in the workspace of the dual-arm system, and then obtain

the position of the arm joints by solving the inverse kinematics

of the arms for each end effector configuration defined by each

sample si. In this way, each sample si generates a 12-dimensional

configuration θi of the dual-arm system. Note that redundant robotic

arms may allow infinite solutions to the inverse kinematics problem,

therefore some anthropomorphism criterion could be optimized while

solving it (e.g. controlling the position of the robot elbows [24]).

Applying the process described in Section III, a 12-dimensional

synergy basis SA was obtained for each task. Table I shows the

resulting variances along each PMD for each task, which are graph-

ically represented in Fig. 5. Note that for the Pouring task almost

the 90% of the sample variance is associated with the first PMD,

the second PMD has still some (low) relevance, but the other PMDs

have a very small dispersion. This means that the task executions were

quite repetitive, and that the task could (almost) be done considering

only the first PMD (which implies the coordinated movement of

several or all the system joints, but since this is done in a fixed

coordinated way it is equivalent to a single degree of freedom). In

the Assembly task there are two PMDs with non-negligible variance

while in the Box task there are three PMDs with non-negligible

variance. Regarding the Free-movement task, it can be seen that the

first two PMDs concentrate the main sample variance although the

Table I
SAMPLE VARIANCE AND ACCUMULATED SAMPLE VARIANCE ALONG

THE j-TH PMD AND TOTAL SAMPLE VARIANCE FOR EACH TASK.

j-th Assembly Pouring Box Free-mov.

PMD var. acc. var. acc. var. acc. var. acc.

1 82.6% 82.6% 89.6% 89.6% 64.4% 64.4% 41.2% 41.2%

2 16.3% 98.9% 5.7% 95.3% 22.7% 87.1% 32.2% 73.3%

3 0.8% 99.7% 2.1% 97.4% 11.1% 98.2% 7.5% 80.8%

4 0.1% 99.8% 1.8% 99.2% 1.0% 99.2% 5.1% 85.9%

5 0.1% 99.9% 0.3% 99.5% 0.5% 99.7% 4.2% 90.1%

6 0.0% 99.9% 0.2% 99.7% 0.2% 99.9% 3.3% 93.4%

7 0.0% 100% 0.1% 99.9% 0.0% 99.9% 2.0% 95.4%

8 0.0% 100% 0.1% 99.9% 0.0% 100% 1.6% 97.0%

9 0.0% 100% 0.0% 100% 0.0% 100% 1.3% 98.3%

10 0.0% 100% 0.0% 100% 0.0% 100% 0.9% 99.2%

11 0.0% 100% 0.0% 100% 0.0% 100% 0.4% 99.7%

12 0.0% 100% 0.0% 100% 0.0% 100% 0.3% 100%

Total 7.942 rad2 7.569 rad2 6.660 rad2 9.994 rad2

(a) Assembly (b) Pouring

(c) Box (d) Free-movement

Figure 5. Accumulated sample variance versus the number of PMDs.

dispersion is still relevant along the first six or seven PMDs. This is

an expected effect since the operator has more freedom to perform

the movements, which can also be seen in the total variance of the

samples, clearly greater than in the other tasks (see Table I).

D. Effect of using PMDs in motion planning

For each task the planning procedure was run using:

1) The whole 12-dimensional dual-arm configuration space.

2) The q-dimensional subspace Bq of the planned task.

3) The q-dimensional subspace Bq of the other tasks.

Note that while the full dimension of the problem is always

m = 12 (the total number of DOF of the two arms), the reduced

dimension q has different values depending on the executed task, we

selected β = 5 in order to cover 95% of the the accumulated variance

of the samples (see Subsection III-B), and therefore results q = 2 for

the Assembly and Pouring tasks, q = 3 for the Box task and q = 7
for the Free-movement task. For each task we choose to use nc = 10
different task queries selected from an initial set of Nc = 100 (see

Section III).

For the Assembly task, the set of goals Nc was generated satisfying

the geometrical constraints necessary for the assembly of the soda can

into a cylindrical box (see Fig. 4a). This results in a 7-dimensional

goal space, i.e. the box can be in different positions and orientations

(six DOF) and the can is allowed to rotate around its axis while

satisfying the pre-assembly pose constraints (one additional DOF).

For the Pouring task the goal space is also 7-dimensional, the glass

must be vertical and resting on the table (three DOF) and the can must
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Table II
AVERAGE MOTION-PLANNING RESULTS WHEN THE TASKS ARE SOLVED WITHOUT PMDS, WITH TASK-SPECIFIC PMDS AND WITH OTHER TASKS PMDS.

Task Assembly Pouring Box

Solved with PMDs of: − Ass. Pour. Box Free. − Ass. Pour. Box Free. − Ass. Pour. Box Free.

# of used PMDs 0 2 2 3 7 0 2 2 3 7 0 2 2 3 7

Space dimension 12 2 2 3 7 12 2 2 3 7 12 2 2 3 7

Success rate [%] 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Used time [ms] 82.93 42.05 62.09 73.42 66.54 127.31 84.66 40.99 65.25 103.00 143.14 93.88 83.23 46.22 103.36

# of tree nodes 6.27 4.02 4.49 5.04 4.95 8.50 6.12 4.00 4.85 6.93 11.70 8.05 6.39 4.04 8.84

Solution length [rad]∗ 3.761 2.112 2.343 2.954 2.691 5.835 4.012 2.240 2.608 4.859 9.186 5.868 4.773 3.603 6.624

Valid segments [%] 80.34 100 100 100 97.77 84.64 100 100 100 100 81.75 95.80 100 100 98.78

# of collision checks 65.28 22.01 35.02 45.08 37.71 161.76 61.43 19.17 37.21 72.92 212.76 85.16 64.61 30.49 123.66

Path in Bq [%]∗∗ 0 89.91 89.83 90.09 90.62 0 89.49 87.43 85.53 92.07 0 93.83 81.11 95.57 94.93

∗ Evaluated as the summation of the joints movements in radians
∗∗ Percentage of the whole path contained in Bq , i.e. without considering the segments from cs to c

′
s and from c

′
g to cg (see Fig. 1).

have the opening exactly above within a predefined height range (one

additional DOF) and with any orientation (three additional DOF).

Note that the rotation about the can axis impose constraints on the

can grasping, and the proper rotation about an horizontal axis depends

on the quantity of liquid in the can, but for illustrative purposes in

this work we simply considered this degree of freedom by imposing

a small predefined rotation range (see Fig. 4b).

For the Box task the goal space is 6-dimensional, the box can

be in any position and orientation on the table (three DOF) and the

cube must be placed at a predefined position inside the box with any

orientation (three additional DOF). It is assumed that the left and right

hands are already grasping the box cover and the cube respectively at

the start configuration (see Fig. 4c) Therefore, the start configuration

depends on the position of the box for the left hand while for the

right hand it is fixed. Similarly, the goal configuration depends on

the position of the box for the right hand while for the left hand it

is fixed.

For each task, an instance of the planner was run in parallel for

each goal configuration, stopping the motion planner when a valid

solution path was found by one of the instances. If the planner could

not solve the task within a predefined time restriction of 100 seconds

the run was considered as a failure. The Open Motion Planning

Library (OMPL [25]) implementation of the RRT-Connect has been

used encapsulated within The Kautham Project (the used planning

and simulation environment [23]).

Table II shows the average planning results obtained after 100

executions for each case of each task, running in a 3.40-GHz Intel

i7-3770, 8-GB RAM PC.

The experimental results show that comparing with the planning

in the whole configuration space (i.e. without the use of synergies):

• The use of PMDs increases significantly the probability of

obtaining collision-free configurations (fewer self-collisions oc-

cur), thus reducing the computational time.

• The use of PMDs allows a reduction of the dimension of the

search space, which reduces also the number of nodes and edges

of the tree and hence reduces the memory requirements.

It must be highlighted that these aspects are more pronounced when

task-specific PMDs are used, but, for general applications, the utility

of the PMDs obtained with the Free-movement task is still relevant,

since they also improve the results compared with planning without

using PMDs.

Table III
LIKENESS L(SA, SB) BETWEEN THE CONSIDERED TASKS.

Tasks Assembly Pouring Box Free-mov.

Assembly 1 0.1081 0.0114 0.6104

Pouring 0.1081 1 0.0035 0.5699

Box 0.0114 0.0035 1 0.6829

Free-mov. 0.6104 0.5699 0.6829 1

VI. PLANNING USING THE TASK LIKENESS:

IMPLEMENTATION AND DISCUSSION

A. Relation between task-dependent synergies and task likeness

Table III shows the likeness L(SA, SB) between the demonstration

tasks obtained with the procedure presented in Section IV. It can be

seen that the Free-movement task is more similar to all the other

tasks, while these tasks are more dissimilar between them.

In order to provide a graphical representation of the likeness

between the tasks, we define a proximity index D(SA, SB) as

D(SA, SB) = 1−L(SA, SB) ∈ [0, 1] (6)

Even when D is not a real distance, since it does not satisfy the

triangle inequality (i.e. the distance between two points must be the

shortest distance along any path between them), it is still possible to

represent the synergy bases of the four considered tasks as points in

a 3D Euclidean space such that the Euclidean distances d(Si, Sj)
between these points minimize the maximum relative error with

respect to the corresponding proximity indices D, i.e minimizing

max
i6=j

(
d(Si, Sj)−D(Si, Sj)

D(Si, Sj)

)
(7)

By doing this, it results that the four points are approximately

coplanar (the Free-movement task is at 0.0001 distance units far from

the plane defined by the other three tasks, while the distance between

any two tasks is higher by about three orders of magnitude), thus the

synergies can actually be represented in a 2D Euclidean space, as

shown in Fig. 6. This representation gives a clear intuitive view of

the relation between the tasks by approximating the likeness L with

the distances between them. Note that the Free-movement task lies

inside the triangle defined by the other tasks. This confirms the idea

of using this synergy basis for general applications.

The likeness L can be used to classify the tasks into families or

clusters, and it is expected that solving a task with the PMDs of a

more alike task would result in a faster and better motion planning.
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Figure 6. Representation of the demonstrated tasks in a 2-dimensional space
based on the L values between the tasks. The origin has been set in the
Free-movement task and the axes orientation was arbitrarily selected. The
distance between two tasks is, by definition, constrained to the [0, 1] interval,
therefore the axes are unit-less.

In order to test the real usefulness of L, we checked whether there

is a relation between tAB , the average time employed to solve the

motion planning of task A using the PMDs of task B (see Table II),

and L(SA, SB), the likeness between tasks A and B (see Table III).

Since the tasks have different degrees of difficulty they inherently

require different times t, thus the t values were normalized to

t̂ ∈ [0, 1] using the minimum time tAmin
and the maximum time tAmax

needed to solve a task A. Then, the values t̂AB were computed as:

t̂AB =
tAB − tAmin

tAmax − tAmin

(8)

It must be highlighted that for all the tasks, the minimum and

maximum times are obtained respectively when the task-specific

PMDs are used and when no PMDs are used. Furthermore, since

the dimension of the search space plays a very important role, the

number q of PMDs used in the motion planning is also considered

in the study of t̂, i.e. t̂ = t̂(L, q).
Using the data in Tables II and III, Fig. 7 shows the normalized

time t̂ as a function of the likeness L and the space dimension q for

the three tasks solved with their task-specific PMDs, the PMDs of the

other two tasks and the PMDs of the Free-movement task. A plane

t̂ = κ0 + κLL+ κq q has been fitted to the values of t̂ as a first-order

approximation. As it was expected the coefficient κL is negative,

i.e. t̂ decreases with L. In addition, κq is positive. Similar results are

obtained when, instead of using the average time t̂, the average path

length or the average number of collisions are plotted. This verifies

the hypothesis that using the PMDs of an alike task according to L
produces better motion planning results (i.e. less planning time and

shorter paths) for the same value of q.

B. Motion planning using task likeness

Consider that there is a new task to be solved but it has not

been previously demonstrated, so a task-specific synergy basis is

not available for it. The procedure proposed to improve the motion

planning for this new task is:

1) Use of the PMDs of the Free-movement task to obtain a first

plan that solves this non-demonstrated task.

2) Run a PCA using the samples of this first plan to obtain a new

set of PMDs, i.e. obtaining a synergy basis ŜV from only one

virtual execution.

3) Search for the synergy basis SA most alike to ŜV . This is done

by looking for the basis SA that maximizes L(ŜV , SA) among

all the demonstrated tasks.

Figure 7. Normalized time t̂ ∈ [0, 1] as a function of the likeness L ∈ [0, 1]
and the number q of PMDs used, for the considered tasks solved with the
own PMDs and the ones of the other tasks. It is also shown the fitted plane
t̂ = κ0 + κLL+ κqq.

Table IV
LIKENESS L(ŜV , SA) BETWEEN THE VIRTUAL

AND THE DEMONSTRATED SYNERGY BASES∗.

Tasks Assembly Pouring Box Free-mov.

Virtual Assembly 0.2416 0.1916 0.1021 0.4966

Virtual Pouring 0.2079 0.3448 0.0645 0.4739

Virtual Box 0.0999 0.1005 0.2146 0.5132

Virtual Bottle 0.4020 0.1082 0.1254 0.6559

∗ The likeness values between each virtual synergy basis and its closest

demonstrated synergy basis are marked in bold, regardless of the basis of the

Free-movement task (i.e. the synergy basis with which the virtual synergy

basis was obtained).

4) Use of SA in a new motion planning process.

In order to check the validity of this procedure, a PCA was run on

the samples obtained from one motion plan of each task generated

using the Free-movement PMDs. This generates a new synergy basis

for each task, and the likeness between this basis and the synergy

bases obtained from the human demonstrations is given in Table IV.

In all the cases the most alike synergy basis is the task-specific

one, e.g. the likeness index between the virtual Assembly and the

Assembly tasks is higher than the likeness index between the virtual

Assembly and the other tasks, disregarding the Free-movement task,

that was used to generate the virtual synergies.

The experimental results show that this approach improves the

planning process. Nevertheless, since there are random searches in

the whole process, the improvement can not be always ensured.

For illustrative purposes, this procedure was also used to solve

the motion planning of a new, non-demonstrated task, called Bottle

task. In this task, the dual-arm robot must grasp a half-full bottle

with one hand and its cap with the other hand, and tap the bottle

(see Fig. 8). Similarly to the Assembly task, the goal space is

also 7-dimensional. However, in this case the goal pose of the

assembled objects, i.e. the bottle tapped by the cap, is highly restricted

in orientation to avoid pouring the liquid. Following the proposed

procedure, a virtual synergy basis for the Bottle task was obtained

using the Free-movement PMDs and the likeness indices with respect

to the demonstrated synergy bases were computed. The Assembly

task results to be the most alike task, as it was intuitively expected

(see Table IV). Finally, the motion planning is solved again using the

Assembly PMDs. The solutions obtained with this procedure results

in movements of the robotic arms that have a natural appearance,

even though the motion planning was solved using the synergies of
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a) b)

Figure 8. Example of a solution path for the Bottle task obtained using the first two PMDs of the Assembly task (i.e. its closest task): a) start and goal
configurations in the simulation environment, showing the planned paths; b) snapshots of the path execution with the real dual-arm system.

a different task. Snapshots of an instance of the obtained solution

paths are shown in Fig. 8.

VII. DISCUSSION AND FUTURE WORK

This paper has dealt with the determination of couplings, called

synergies or PMDs, between the DOF of the arms of an operator,

while performing different tasks, in order to use them to improve the

motion planning process and the plan itself when a dual-arm robotic

system performs the same or new tasks. The approach was detailed

and implemented using an specific dual-arm system composed of

two UR5 manipulators, although it can be mimicked for any other

anthropomorphic dual-arm system.

The most relevant synergies define a lower-dimensional space

where the motion planning can be done efficiently. The validity of

the approach has been demonstrated analyzing the movements done

to solve three different tasks plus a set of general movements freely

done in the workspace (a Free-movement task). The results effectively

showed that the use of the synergy space for the motion planning

greatly reduces the computational time, basically due to the fact that

the sampling procedure resulted in fewer self-collision configurations,

and also to the planning in a reduced search space of lower dimension.

The paper has also proposed a likeness index between synergy

bases, which indicates the similarity of two tasks according to the

similarity of the movements done to solve them. The experimental

results showed the relevance of this likeness index. After solving

each task with different synergies it was demonstrated that using its

task-specific synergies produces the best results, and in the other

cases the higher the likeness between the used synergies and the

task-specific ones the better the results, as long as the same number

of PMDs is used. Moreover, a procedure to tackle the motion planning

for new tasks has been also introduced, i.e. for tasks that have not

been previously demonstrated by a user and therefore no task-specific

synergy bases were available. A first clear result is that using the

Free-movement synergies to plan a new task produces better results

than not using synergies at all. A second option to further improve

the results is the use of this first solution to compute a new (non-

demonstrated) synergy basis, then, search the set of available synergy

bases for the most likely one and, finally, use this existing synergy

basis to recompute the solution path. As shown in the presented

examples, the results were always improved.

The proposal opens several interesting potential research lines, such

as the generation of a taxonomy of tasks based on the motions that

humans do to solve them, the use of learning procedures to improve

the set of synergies each time a new task is executed, the use of

synergies in the space of the joint velocities of the arms in order to

better mimic human movements during task executions, and the use of

physics-based motion planners when interaction with the environment

is allowed. Some works related to the last two research lines have

been already developed [26], [27].

APPENDIX

This appendix describes the derivation of Eq. (4) and (5), and

proves that the product of two multivariate normal distributions NA

and NB is a multivariate normal distribution NC except for a scale

factor γ (i.e. NANB = γNC ).

Proof that NANB = γNC : Using Eq. (1), NANB results

NANB =
e
−1

2

(

µ
⊺

A
Σ
−1

AµA+µ
⊺

B
Σ
−1

BµB+x
⊺(Σ−1

A
+Σ−1

B )x−2(µ⊺

A
Σ−1

A
+µ

⊺

B
Σ−1

B )x
)

(2π)m
√

|ΣA||ΣB |

=
e
−1

2

(

µ
⊺

A
Σ
−1

AµA+µ
⊺

B
Σ
−1

BµB−µ
⊺

C
Σ
−1

CµC+(x−µC )⊺Σ
−1

C (x−µC )
)

(2π)m
√

|ΣA||ΣB |

=
e
−1

2

(

µ
⊺

A
Σ
−1

AµA+µ
⊺

B
Σ
−1

BµB−µ
⊺

C
Σ
−1

CµC

)

√
(2π)m|ΣA||ΣB ||ΣC |−1

NC = γNC (9)

where ΣC =
(
Σ−1
A +Σ−1

B

)−1
, and µC = ΣC(Σ

−1

AµA + Σ
−1

BµB).

Proof of Eq. (4): On the first hand, from the matrix inversion

lemma [28] the following equalities are derived

ΣC =
(
Σ−1

A +Σ−1
B

)−1
=

{
ΣA−ΣA(ΣA+ΣB)−1ΣA

ΣB−ΣB(ΣA+ΣB)−1ΣB

(10)

Σ−1
A ΣCΣ

−1
B =Σ−1

A

(
ΣC

(
Σ−1

A+Σ−1
B

)
−ΣCΣ

−1
A

)
=Σ−1

A

(
I−ΣCΣ

−1
A

)

=Σ−1
A −Σ−1

A ΣCΣ
−1
A =(ΣA+ΣB)−1

(11)

where I is the identity matrix. Therefore,

µ
⊺

AΣ
−1
AµA+ µ

⊺

BΣ
−1
BµB − µ

⊺

CΣ
−1
CµC

= µ
⊺

A(ΣA+ΣB)
−1
µA+µ

⊺

B(ΣA+ΣB)
−1
µB−2µ⊺

A(ΣA+ΣB)
−1
µB

= (µA−µB)⊺(ΣA+ΣB)
−1(µA−µB)

(12)

On the other hand, we know by the matrix determinant lemma [29]

that

|ΣC | =
∣∣Σ−1

A + Σ−1
B

∣∣−1
= |ΣA||ΣB ||ΣA+ΣB |−1

(13)
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These statements simplify Eq. (9) to

NANB =
e−

1

2
(µA−µB)

⊺
(ΣA+ΣB)−1(µA−µB)

√
(2π)m|ΣA+ΣB |

NC (14)

And since the integral of a probability density function over the entire

space is 1 by definition, ΦAB can be expressed as

ΦAB =

∫ ∞

−∞

· · ·
∫ ∞

−∞

NANBdx =
e−

1

2
(µA−µB)

⊺
(ΣA+ΣB)−1(µA−µB)

√
(2π)m|ΣA+ΣB |

(15)

Proof of Eq. (5): On the first hand, we know by the results

in [30] that

|ΣA+ΣB | ≥∏m

j=1

(
σ
2
Aj

+ σ
2
Bj

)
(16)

On the other hand, e−x2∈ (0, 1], x ∈ R. With this in mind, we can

have lower and upper bounds for ΦAB

0 < ΦAB ≤ Φ̃ABmax =
(
(2π)m

∏m

j=1

(
σ
2
Aj

+ σ
2
Bj

))− 1

2

(17)

Note that the equality is held when µA = µB and UA = UB .

Nevertheless, Φ̃ABmax is not the upper bound we want since the

inequality becomes an equality no matter what the eigenvalues of ΣA

and ΣB are; L(SA, SB) is desired to be 1 (i.e. ΦAB =ΦABmax ) if and

only if SA and SB are exactly the same synergy basis (i.e. µA = µB

and ΣA = ΣB). However, using the fact that 2(x2+y2) ≥ (|x|+|y|)2
(the equality holds ∀x= y), now we can define our global bounds as

0< ΦAB ≤ Φ̃ABmax ≤ ΦABmax =
(
π

m
2

∏m

j=1(σAj+ σBj )
)−1

(18)
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