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Abstract Planning efficiently at task and motion levels al-
lows the setting of new challenges for robotic manipulation
problems, like for instance constrained table-top problems
for bi-manual robots. In this scope, the appropriate combi-
nation of task and motion planning levels plays an impor-
tant role. Accordingly, a heuristic-based task and motion
planning approach is proposed, in which the computation
of the heuristic addresses a geometrically relaxed problem,
i.e., it only reasons upon objects placements, grasp poses,
and inverse kinematics solutions. Motion paths are evalu-
ated lazily, i.e., only after an action has been selected by
the heuristic. This reduces the number of calls to the motion
planner, while backtracking is reduced because the heuris-
tic captures most of the geometric constraints. The approach
has been validated in simulation and on a real robot, with
different classes of table-top manipulation problems. Em-
pirical comparison with recent approaches solving similar
problems is also reported, showing that the proposed ap-
proach results in significant improvement both in terms of
planing time and success rate.
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Politècnica de Catalunya (UPC) – Barcelona Tech
E-mail: aliakbar.akbari@upc.edu, jan.rosell@upc.edu

Fabien Lagriffoul
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1 Introduction

Solving robotic manipulation problems like setting a table
with various objects requires a planning system which is ca-
pable of finding a complete sequence of actions along with
feasible paths. Such planning problems becomes more chal-
lenging if the actions required to perform the task are sub-
ject to strong geometric constraints from the environment
(lack of space for placing objects, occlusions) and the robot
(reachability of objects, kinematic constraints of the ma-
nipulators). Then, the choice of geometric values like ob-
ject placements, grasp poses, or inverse kinematic solutions
(which may depend on each other) is crucial in order to
avoid any dead-end task or unfeasible plan. The problem is
even more relevant for bi-manual robots where the different
reachability of each arm has to be accounted for.

To address manipulation planning problems, variants of
probabilistic roadmaps have been proposed, like the manip-
ulation graph by (Siméon et al, 2004), or multimodal motion
planning techniques (Hauser and Latombe, 2010; Hauser
et al, 2010). However, roadmap methods do not cope well
with the curse of dimensionality inherent to manipulation
problems with many objects. Task and Motion Planning (TAMP),
which looks for a discrete sequence of symbolic actions along
with a motion plan for each of them, is another possible ap-
proach. The underlying discrete structure of manipulation
tasks (grasps and placements) is explicitly represented in the
symbolic domain, which breaks down the complexity of the
problem. The main difficulty when using TAMP for con-
strained manipulation planning problems is to avoid calling
the motion planer for unfeasible actions, which is a chal-
lenging issue for efficiently solving manipulation problems.

There are two main ways of integrating task and mo-
tion planning information recently studied: simultaneously
or interleaved. Approaches like (Akbari et al, 2016; Cam-
bon et al, 2009; Garrett et al, 2015) account for geometric
information by calling a motion planner while task planning
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is being pursued. Therefore in these approaches, a manipu-
lation plan is available when the task planning process is ter-
minated. On the contrary, the methods investigated by (Dan-
tam et al, 2016; He et al, 2015; Lagriffoul and Andres, 2016;
Srivastava et al, 2014) decouple motion planning from the
task planning part. They first do task planning, and then call
the motion planner to evaluate the feasibility of the plan.
Upon failure, geometric constraints are fed back to the task
planner and the procedure resumes. This can be repeated
several times until a feasible manipulation plan is found.

The integration of task and motion planning is challeng-
ing when the problem is highly constrained in terms of robot
kinematics and obstacles’ placement, due to the fact that it
may require many calls to the motion planner while task
planning is being pursued, or a large number of restarts of a
task planner which has a high computational cost.

1.1 A motivating example

Consider a manipulation problem including the bi-manual
Yumi robot and a set of objects as depicted in Fig 1. The task
is to place objects A, B, and I on the tray and object C inside
shelf 2. Initially, the left arm cannot access objects A, B, I,
and H because they are located out of its reachability space.
Therefore, both arms have to collaborate with each other to
solve the task. Objects A and B are not directly accessible
due to the critical position of objects I and H that cause col-
lisions with the robot when their grasp is attempted. In order
to allow the robot to transfer the objects from one side of the
table to the other, a tiny region is defined in the middle of
the table to which both arms can have access. Initially, this
region is entirely occupied by object D and we assume that
no objects can be stacked on top of it. This situation imposes
a constraint on the placement of any objects in this region.
Furthermore, only two objects can be placed over the tray
at most, due to its limited capacity, and the other ones can
be piled on top of each other if needed, i.e., objects A and
I can be placed on the tray surface and B on top of A. The
order in which the goals are achieved is a critical issue. For
instance, if object I is located on the tray at first, there is no
feasible kinematic solution for transferring object C within
shelf 2 because its entrance would be occluded. Goal order-
ing is also critical regarding actions including both arms and
the middle region.

It must be noted that the aforementioned challenges do
not require reasoning upon the details of robot motions to be
addressed. Most of them can be detected using lightweight
geometric reasoning processes with respect to arms inverse
kinematic solutions, collision detection for possible choices
of objects placements, performed at initial and final config-
urations of each action.

Fig. 1: A motivating example: the Yumi robot must deliver
objects A, B, and I to the tray, and object C within the shelf
2 in the presence of kinematics and placement constraints.

1.2 Contributions

The current study proposes a simultaneous TAMP approach
to efficiently deal with bi-manual robot manipulation prob-
lems in constrained environments. The proposed approach is
a heuristic-based planner, which searches for a plan in state
space, and takes into consideration geometric constraints while
computing heuristic values. Two types of geometric reason-
ing processes are used: a) geometric reasoning about place-
ments of objects, grasping poses, and inverse kinematic so-
lutions; b) geometric reasoning about motion. The former
involves Spatial, Reachability, and Manipulation reasoning,
which are used to account for geometric constraints in heuris-
tic values. The proposed heuristic is able to cover a large
range of tabletop manipulation problems. It figures out and
excludes unfeasible motion planning queries which have kine-
matic problems or collisions in their start and goal configu-
rations, and guides state space search. The latter calls a mo-
tion planner for validating state transitions and either returns
a path or provides feedback in case of failure. The state of
planner is updated by the constraints which are detected us-
ing both geometric reasoning processes.

2 Related Work

2.1 Task planning approaches

There are different approaches in Artificial Intelligence (AI)
like classical planning, logic programming, or constraint sat-
isfaction, which have been used by robotics researchers to
devise TAMP planning approaches.

Planning can be done by searching in plan space, like
the GRAPHPLAN task planner (Blum and Furst, 1997), by
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iterative expansion of a Planning Graph. A planning graph
is a data-structure interleaving state-levels and action-levels.
Each state-level consists of the union of atoms (see Def. 1)
achievable by the actions in the previous level, and each
action-level is the set of actions whose preconditions are
present in the previous state-level. The graph is expanded
until goal conditions appear in the last state-level, while mu-
tual exclusion relations among actions and states are main-
tained. A plan is then looked for by backtracking from the
last state-level towards the initial state-level taking mutual
exclusions into account. If no plan can be found, the graph
is expanded and the procedure is repeated.

Alternatively, search can be done in state space. In this
line, one of the most efficient task planning approaches is the
FastForward (FF) (Hoffmann and Nebel, 2001) which per-
forms a heuristic search. This is the task planner used in this
paper. It has two main components: the Enforced Hill Climb-
ing (EHC) module devoted to select the more promising
successor state using the heuristic values, and the Relaxed
GRAPHPLAN module that computes the heuristic value in
terms of the estimated number of actions. This later mod-
ule also computes the set of helpful actions (i.e. those ac-
tions that executed from that state have a high probability
of being in the solution plan), which allows making the ex-
ploration more efficient. The Relaxed GRAPHPLAN mod-
ule is based on a relaxed version of the Planning Graph.
The relaxed version of the Planning Graph (called RPG) ig-
nores the delete lists of the actions, so mutual exclusion rela-
tions do not take effect in the planning phase. From the first
state-level at which all the problem goals appear, a backward
search is applied that results in the relaxed plan composed of
the sequence of cheapest actions connecting the initial state
to the final one. The heuristic value is then computed as the
number of actions in the relaxed plan, and the helpful actions
are those actions of the RPG that appear in the first action
level. If EHC fails, everything done so far is skipped and the
FF restarts considering Best-First Search (BFS) instead of
EHC.

Other task planning techniques like hierarchical-based
planning recursively decompose tasks into sub-tasks, down
to ground actions. Dependency among actions are modeled
with so called Hierarchical Task Network (HTN) (Ghallab
et al, 2004). Linear Temporal Logic (LTL), Satisfiability Mod-
ulo Theories (SMT), and Answer Set Programming (ASP)
tackle task planning with logic programming. LTL (Clarke
et al, 1999) is a formalism used to specify tasks by combin-
ing logical propositions and temporal operators (LTL for-
mula), for which models are found using dedicated solvers.
SMT (De Moura and Bjørner, 2011) and ASP (Lifschitz,
2002) are constraint-based languages capable of expressing
boolean satisfiability problems combined with other theo-
ries, e.g., integers. SMT problems are solved with constraint

programing, while ASP problems are solved with Satisfia-
bility (SAT) solvers.

Usually, task planning domain is represented by the Plan-
ning Domain Definition Language (PDDL) (Ghallab et al,
1998) whose purpose is to standardize the setup of AI plan-
ning problems.

2.2 Motion planning approaches

Motion planning is mostly done in the configuration space
(C-space) (Lozano-Perez, 1983). The C-space has as many
dimensions as degrees of freedom the robot has, and there-
fore each point represents a configuration of the robot. The
subspace corresponding to collision-free configurations is
called Cfree and the subspace corresponding to collision con-
figurations is called Cobs. Motion planning in C-space con-
sists in finding a path in Cfree between two configurations.

Recently, much study is centered in sampling-based mo-
tion planning to provide efficient solutions for path plan-
ning by avoiding the need to compute the whole C-space.
Path planning based on the Probabilistic Roadmap Method
(PRM) (Kavraki et al, 1996) is done in two phases. The
first phase is the construction phase, that spends a specific
amount of time sampling Cfree and interconnecting samples
with simple collision-free paths forming a roadmap. The
second phase is the query process, which connects a start
configuration to a goal configuration by using graph search
techniques. Alternatively, path planning based on the Rapidly
Exploring Random Tree (RRT) (LaValle and Kuffner, 2001)
explores the configuration space by expanding several branches
of a tree. In the generic RRT algorithm, a tree is initialized at
the root where the initial state is placed and it incrementally
grows towards the goal configuration along random direc-
tions biased by the less explored areas. The RRT-Connect
(Kuffner and LaValle, 2000) is a variant of RRT that has
two trees rooted at the start and goal configurations that try
to meet each other. This is the motion planner used in this
paper.

2.3 Manipulation planning

The limitation of generic motion planning emerges when
a robot requires to displace objects when there is no fea-
sible path between two robot configurations due to task con-
straints. Accordingly, various versions of motion planning
have been enhanced and applied for solving a manipula-
tion problem. One is called physics-based motion planning
and considers dynamic interactions between rigid bodies.
Physics-based motion planning has been applied in manipu-
lation problems where pushing actions are required, for in-
stance (Muhayyuddin et al, 2015). A more general manipu-
lation planning approach using several PRMs has been de-
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veloped by (Siméon et al, 2004) that considers multiple pos-
sible grasps (that can be used for re-grasping the objects)
and stable placements of the movable objects to solve the
problem. The manipulation problem of Navigation Among
Movable Obstacles (NAMO) has been addressed in (Stilman
et al, 2007) and (Stilman and Kuffner, 2008) using a back-
ward search algorithm from the goal in order to move the
objects occluding the way between two robot configurations.
The works in (Hauser et al, 2010) and (Hauser and Latombe,
2010) have investigated multimodal motion planning for the
application of climbing robots and push-planning by a hu-
manoid robot, respectively, without consideration of causal
reasoning. The work in (Hauser, 2014) deals with the Min-
imum Constraint Removal (MCR) problem while search-
ing for a motion path. The algorithm incrementally grows
a PRM for estimating the connectivity of the configuration
space, and results in a path that violates the fewest object-
collision constraints.

In the related field of grasp planning, Azizi et al. pro-
pose a geometric approach based on detecting a complete
set of object subsurfaces in a cluttered scene (Azizi et al,
2017), which allows the end-effector to safely approach and
grasp the object. In a similar vein, (Hertle and Nebel, 2017)
present techniques for sampling appropriate geometric con-
figurations for object placements, grasping poses, or robot
positions, in order to perform a specific action. And recently,
a method for grasp planning in cluttered environments has
been proposed (Muhayyuddin et al, 2018), that uses ran-
domized physics-based motion planning to account for robot-
object and object-object interactions. This allows a robot to
push obstructing objects away while reaching a target grasp
pose.

2.4 Combining task and motion planning approaches

Different studies have dealt with various strategies to com-
bine task and motion planning with the aim of finding a fea-
sible plan to solve a given task.

The work in (Dornhege et al, 2012) introduces semantic
attachments, which are external reasoners called when the
preconditions of actions are evaluated (a motion planner in
this case). Other approaches employ a generic interface be-
tween symbolic and geometric planning levels to determine
whether a collision-free motion for symbolic actions exists
or not (Erdem et al, 2011; Srivastava et al, 2014). This is
done by calling a motion planner for each symbolic action in
the plan obtained by the task planner. In case of failure, ob-
structing objects are identified and the state of the task plan-
ner is updated with no-good constraints referring to these
objects. The process is resumed and repeated until a feasi-
ble manipulation plan is found. Lagriffoul et al (2012, 2014)
introduce the concept of geometric backtracking, which de-
notes the systematic search process in the space of grasps

and placements when instantiating a symbolic plan. They
use linear constraints generated from symbolic actions and
the kinematic model of the robot in order to prune the space
of grasps and placements. In all these approaches (except
the one by Dornhege et al.), a symbolic plan is computed
first, and geometric constraints are evaluated afterwards. By
contrast, our approach evaluates geometric constraints for
individual actions while task planning is performed. Next,
we present approaches in which task planning and geomet-
ric reasoning are more tightly intertwined.

Planning Graph-based TAMP. The problem of planning
push and pull actions by a mobile robot has been addressed
by (Akbari et al, 2015a,b). It combines different knowledge-
based task planners with physics-based motion planners. This
approach evaluates the feasibility of actions while planning,
allowing to cut off unfeasible action branches at the task
level (Akbari et al, 2015a). A modified version of GRAPH-
PLAN (Akbari et al, 2015b) was proposed to allow the re-
trieving of several potential plans which were subsequently
evaluated by a physics-based motion planner to find the least-
cost feasible one. These approaches can be computationally
expensive in terms of number of calls to the motion planner.

FF-based TAMP. (Cambon et al, 2009) present an algo-
rithm which interleaves search at symbolic and geometric
levels, where a PRM motion planner calls the task planner
to guide roadmap sampling. Upon failure of a selected ac-
tion, the PRM is left for further exploration (thus keeping the
probabilistic completeness of sampling-based motion plan-
ners). Guidance is provided by a heuristic value based on
the symbolic distance to the goal. On the other hand, the
work in (Garrett et al, 2015) proposed an approach, called
FFRob, which computes the heuristic value by analyzing
the feasibility of actions with a Conditional Reachability
Graph (CRG) based on a modification of PRM planner. It
requires a pre-processing step to initialize the CRG by sam-
pling objects poses and robot configurations, and determin-
ing conditions under which these samples are reachable or
not. The study in (Akbari et al, 2016) proposes the κ-TMP
for multi mobile robots. The approach calls a physics-based
motion planner during heuristic computation only for ac-
tions manipulating an object. In the last two approaches, the
heuristic function considers geometric information, by call-
ing the motion planner or by evaluating different accessibil-
ity queries which can be expensive in constrained environ-
ments. To mitigate this drawback, the current study only per-
forms relaxed geometric information in the heuristic compu-
tation.

Hierarchical-based TAMP. The work in (de Silva et al,
2013) focuses on a combination based on the HTN plan-
ner. It facilitates backtracking at different levels, also in-
cluding an interleaved backtracking procedure. The work in
(Kaelbling and Lozano-Pérez, 2011) has addressed an ag-
gressively hierarchical approach that constrains the abstract
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plan steps so that they are serializable (i.e. so that the par-
ticular way of performing the first step does not make it
impossible to carry out subsequent steps), and handles the
integration by operating on detailed, continuous geometric
representations.

LTL-based TAMP. The work in (He et al, 2015) applied
TAMP using the LTL task planner. Motion planning evalu-
ation launches after a task plan is provided. In the case of
failure, task planning input can be updated by a set of con-
straints in order to find another plan. The authors claim the
planner is capable enough in moving away objects that block
desired executions without requiring backtracking.

Constraint-based TAMP. The work in (Dantam et al, 2016)
proposed the Iteratively Deepened Task and Motion Plan-
ning method using the SMT. It incrementally detects con-
straints and keeps dynamically adding or eliminating a num-
ber of task constrains based on the feedback obtained from
the RRT-Connect motion planner. The approach is able to
find an alternative plan when an unfeasible one is identi-
fied. It first finds the task plan, and then motion planning is
employed to evaluate its feasibility. The work presented by
(Lagriffoul and Andres, 2016) addresses TAMP by solving a
culprit detection problem. In case of failure at the geometric
level, a logical explanation is computed. This explanation is
fed back to the ASP task planner, which prunes entire fam-
ilies of plans leading to similar failures. The cycle repeats
until a feasible plan is found.

Erdem et al (2016) investigated different integration meth-
ods between task and motion planning, focusing on when
and how feasibility checks should be performed. Computa-
tional benefits and drawbacks of different method are sys-
tematically compared. A similar analysis was done by La-
griffoul et al (2013), in which various degrees of postpon-
ing feasibility checks are mathematically and empirically
compared. Both studies point out the importance of the type
of problem considered for choosing an appropriate method,
e.g., large task spaces are not amenable to pre-computation
or, geometrically constrained problems benefit from tight
task-motion integration because it allows early pruning.

3 Overview of the Proposed Task and Motion Planning

The proposed TAMP extends the basic FF planner in or-
der to consider geometric information while planning. The
approach uses hybrid planning information for representing
the effects of actions in terms of symbolic and geometric in-
formation. The architecture of the system is sketched in Fig
2. It consists of three main parts: Heuristic Computation,
State Space Search, and Action Selection Process.

Heuristic Computation returns a heuristic value and a
set of helpful actions for a given state. The standard RPG
is first constructed and the relaxed plan is extracted. The

relaxed plan is then fed into a geometric reasoner which
checks it against certain geometric constraints, i.e., reach-
ability, collisions, and graspability. If these constraints are
satisfied, the heuristic value is returned along with helpful
actions. If a constraint is violated, the state is updated with a
set of atoms(s) describing the cause of failure, and an alter-
native relaxed plan is looked for. Hence the heuristic func-
tion is informative both in terms of symbolic and geometric
constraints.

State Space Search keeps the standard search procedure
of the FF planner, i.e., enforced hill climbing (EHC). From
each state, the action resulting in the state with lowest heuris-
tic value is selected. The only difference is that the heuristic
value now accounts for geometric constraints.

The Action Selection Process attempts to find a motion
path for an action. Using information from geometric rea-
soning, it is possible to define start and goal configurations
for the RRT-Connect motion planner, and compute a path.
If motion planning fails, the current state is updated with
the cause of failure and the search resumes. Otherwise, the
action is added to the partial plan at hand.

The rest of the paper is structured as follows. First, Sec-
tion 4 introduces the planning domains, Section 5 describes
how the relaxed geometric reasoning process is accomplished
for symbolic actions, and Section 6 illustrates the heuris-
tic computation based on the relaxed geometric reasoning.
Then, Section 7 demonstrates the planning part in the state
space, Section 8 discusses implementation issues and the re-
sults of different manipulation problems, and finally Sec-
tion 9 concludes the work.

4 Task and Motion Planning Formulation

4.1 Definitions

Definition 1 (Hybrid TAMP Domain) A hybrid TAMP do-
main D is a tuple 〈A,F ,W, Acc, Sg〉 where A is the ac-
tion space, F a set of ground atoms, W = (R,O) is a
workspace including a set of robots R and a set of mov-
able and fixed objectsO.Acc represents potential accessible
workspace regions w.r.t. robot arms, Sg is a set of predefined
grasping poses for objects. Objects are denoted as:
O={Om

1 (pos,fe) . . .Om
j (pos,fe),Of

1 (pos,fe) . . .Of
k (pos,fe)}

where j and k are the number of Movable and Fixed ob-
jects respectively, whose initial position and orientation is
denoted by pos, and whose features are denoted by fe. In
the present case, the bi-manual Yumi robot is represented
by R = {LArm,RArm}, for left and right arms respec-
tively, and its configuration (a vector of joint angles) is de-
noted by Q. Acc = {Accl, Accr, Accm} represent prede-
fined workspace regions which can be kinematically reach-
able by the left arm, right arm, and both arms, respectively.
In order for the task planner to assign reachable targets to
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Fig. 2: The proposed system overview of TAMP

each arm, configuration symbols are typed by ConfRobLeft
or ConfRobRight, which map to Accl ∪ Accm or Accr ∪
Accm, respectively. In this way, some unfeasible actions are
pruned from the search space of planning. For example, if
an object is located on the left side of a table which is not
reachable by the right arm, task planning applies the move
action considering the left arm.

Definition 2 (Hybrid Action) A hybrid action a ∈ A is a
tuple 〈name(a), pre(a), effect(a), coneffect(a),Q(a)〉 where:

– name(a) is the action symbolic name.
– pre(a) is a set of atoms which must hold for the action to

be applied. It includes:
– geometric details: geom(a) is the component and nu-

merical counterparts of pre(a). It represents geomet-
ric values in W , i.e., how object poses and/or robot
configuration should be before executing the action.
This information is important for geometric reason-
ing and setting a motion planning query.

– effect(a) represents the effects of a on the state it is ap-
plied to. It consists of:
– effect+(a), positive effects, i.e., a set of atoms added

to the current state;
– effect−(a), negative effects, i.e., a set of atoms deleted

from the current state.
– geometric details: geom+(a) and geom−(a) are the

components and numerical counterparts of effect+(a)
and effect−(a) computed during geometric reason-
ing. They represent changes in W , i.e., how object
poses and/or robot configuration are modified by ex-
ecuting the action. For instance, when an object is
transferred to a new location, the new pose is rep-
resented in geom+(a). A data-structure is so con-
sidered to store the geometric information such as

grasping pose, object pose placement, and robot con-
figurations.

– coneffect(a) is the set of conditional effects, i.e., pairs
〈con(a), effect(a)〉 such that effect(a) is applied when
the formula con(a) holds.

– Q(a) is a query function to the motion planner which
computes a motion between two robot configurations
and stores the solution if any.

Definition 3 (Hybrid Relaxed Action) A hybrid relaxed
action a′ ∈ A′ (where A′ denotes the relaxed action space)
is a tuple 〈name(a′), pre(a′), effect(a′), coneffect(a′), ∅〉where
effect(a′) contains only effect+(a′) and geom+(a′). In other
words, a hybrid relaxed action does not incorporate any neg-
ative effect. A hybrid relaxed domain D′ is a tuple
〈A′,F ,W, Acc, Sg〉.

Definition 4 (Hybrid State) A hybrid state S is a tuple S =

〈P,V〉 where P is a set of ground atoms which hold in that
state, and V represents a full geometric description of the
scene, i.e., configurations of robots and poses of objects. Ap-
plying action a to state S1 results in state S2 as follows:

S2.P = {(S1.P ∪ effect+(a))\effect−(a)}
S2.V = {(S1.V ∪ geom+(a))\geom−(a)}

(1)

The hybrid state is required to represent the effects of ac-
tions in terms of symbolic and geometric information. A
data-structure for storing geometric information is consid-
ered that is needed to compute heuristic values (see Sec. 6).
The data-structure of a state includes information like all
poses of the fixed and manipulatable objects along the con-
figurations of both robotic arms.
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Definition 5 (Hybrid Relaxed State) A hybrid relaxed state
is a tuple 〈P ′,V ′〉 where P ′ is a set of ground atoms which
hold in that state, V ′ represents a full geometric description
of the scene. P ′ and V ′ are the result of applying a relaxed
action (see Def. 3). Hence, since no negative effects are con-
sidered, applying the relaxed action a′ to state S′1 results in
state S′2 as follows:

S′2.P ′ = {S′1.P ′ ∪ effect+(a′)}
S′2.V ′ = {S′1.V ′ ∪ geom+(a′)}

(2)

Accordingly, there can be many relaxed worlds depend-
ing on the number of geometric details recorded for each
symbol related to objects’ placements and robot configu-
rations, as symbols can have different values at the same
time. For instance, if there is one movable object which is
initially grasped by the robot and it is transferred to a new
position (by a relaxed action), the object will have two ge-
ometric placements values, i.e., its initial position and the
transferred position, and the robot will also have two geo-
metric configuration values in this state. The following two
possible worlds exist for the example:

– The object is in the initial position and the robot is in the
initial configuration.

– The object is in the final position and the robot is in the
final configuration.

This concept allows the planner to evaluate all possible
situations when requested.

Definition 6 (Hybrid TAMP Planning Problem ) A hy-
brid TAMP planning problem T is represented by a tuple
〈D,S0,G〉 where D is a hybrid domain, S0 consists of a
set of ground atoms representing the initial symbolic state I
such that I ⊆ F along their geometric assignments regard-
ing the initial state of the worldW0, and G ⊆ F is the set of
symbolic goal conditions. The solution of a TAMP problem
is a hybrid plan, i.e., a sequence of symbolic actions achiev-
ing G, along with a feasible motion for each action, which
we denote by π.

Definition 7 (Hybrid Relaxed Planning Problem ) A hy-
brid relaxed planning problem T ′ is described as a tuple
〈D′,Si,G〉 where D′ is the hybrid relaxed domain, and Si
is the current state from which the relaxed plan is computed.
We denote the relaxed plan by π′.

4.2 Manipulation Action Templates

The following action templates and all the symbols (like
those considered for the reachability of robot arms) to solve
the pick and place manipulation tasks are defined using PDDL.

Note that PDDL can use ADL (Action Description Lan-
guage, Pednault (1989)) which allows us to write opera-
tors in a more compact way, using quantifiers and condi-
tional effects. Geometric details of symbolic actions condi-
tions (such as object placements or robot grasp configura-
tions) are not pre-computed. They are sampled and assigned
on demand during the planning process.

The action template Move(Rob, Q, Q′) is designed to
move the robot arm Rob between configurations Q and Q′

without holding any object. The action is applicable if the
following preconditions hold: the robot arm is located at Q,
its hand is empty, it can reach configuration Q′ and no mov-
able objects are blocking its way to Q′. The last precondition
is represented by fact isCrit(Om

j , Q′); objects that make this
fact to hold are called Critical Objects. As a result of the ac-
tion, conditional effects (specified by when), whose purpose
is to classify the symbolic configuration space for the right
arm RArm and the left arm LArm, are specified. When the
move action is applied to RArm, Q′ belongs to the symbolic
configurations considered for the right arm, ConfRobRight.
When the move action is applied to LArm, Q′ belongs to
symbolic configurations considered for the left arm, Con-
fRobLeft.

Move(Rob, Q, Q′):

Pre: At(Rob, Q), HandEmpty(Rob), ∼UnReach(Rob, Q′), ∀Om
j

∼isCrit(Om
j , Q′)

Effect: when (con: Rob = RArm)⇒ {At(Rob, Q′), Q′ ∈ ConfRo-
bRight}, when (con: Rob = LArm) ⇒ {At(Rob, Q′), Q′ ∈ Con-
fRobLeft}, ∼At(Rob, Q)

The action template MoveHolding(Rob,Om
i , Q, Q′, Pos,

Pos′) is designed to move the robot Rob between configura-
tions Q and Q′ while holding object Om

i , changing its pose
from Pos to Pos′ if Pos′ is feasible. The action uses condi-
tional effects like those of the move action.

MoveHolding(Rob, Om
i , Q, Q′, Pos, Pos′):

Pre: At(Rob, Q), Holding(Rob,Om
i , Q, Pos),∼Infeas(Pos′,Om

i ),
∼UnReach(Rob, Q′), ∀Om

j ∼isCrit(Om
j , Q′)

Effect: when (con: Rob = RArm)⇒ {At(Rob, Q′), Q′ ∈ ConfRo-
bRight}, when (con: Rob = LArm) ⇒ {At(Rob, Q′), Q′ ∈ Con-
fRobLeft}, Holding(Rob,Om

i , Q′, Pos′), ∼At(Rob, Q),
∼Holding(Rob,Om

i , Q, Pos)

The action template PickUp(Rob, Om
i , Q, Pos) is de-

scribed to pickOm
i by Rob. It is responsible to attachOm

i to
the robot gripper when the robot is located at Q with no at-
tached object, and Om

i lays on a position Pos on the surface
and its top side is free.

PickUp(Rob, Om
i , Q, Pos):

Pre: At(Rob, Q), HandEmpty(Rob), Clear(Om
i ),

On-surface(Om
i , Pos, Q)

Effect: Holding(Rob,Om
i , Q, Pos), ∼HandEmpty(Rob),

∼On-surface(Om
i , Pos, Q)

The action template PutDown(Rob, Om
i , Q, Pos) is de-

scribed to put down Om
i over a surface at Pos by detaching
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the object from the robot when Rob holds Om
i in Q. The

action is also responsible to negate isCrit facts for the asso-
ciated Om

i if any.
PutDown(Rob, Om

i , Q, Pos):

Pre: Holding(Rob,Om
i , Q, Pos)

Effect: HandEmpty(Rob), Clear(Om
i ), On-surface(Om

i , Pos, Q),
∼Holding(Rob,Om

i , Q), ∀Q′∼isCrit(Om
i , Q′)

The action template Stack(Rob,Om
i ,Om

j , Q, Pos) is used
to stack Om

i on the top of Om
j . It is applicable when Rob is

holding Om
i and the top side of Om

j where Om
i is going to

be located is free.
Stack(Rob, Om

i , Om
j , Q, Pos):

Pre: Clear(Om
j ), Holding(Rob,Om

i , Q, Pos)
Effect: HandEmpty(Rob), Clear(Om

i ), On(Om
i ,Om

j , Pos),
∼Clear(Om

j ), ∀Q′∼isCrit(Om
i , Q′)

Finally, the action template UnStack(Rob, Om
i , Om

j , Q,
Pos) is applied to pick a pilled object Om

i .
UnStack(Rob, Om

i , Om
j , Q, Pos):

Pre: At(Rob, Q), HandEmpty(Rob), Clear(Om
i ), On(Om

i , Om
j ,

Pos)
Effect: Clear(Om

j ), Holding(Rob,Om
i , Q, Pos),

∼HandEmpty(Rob), ∼On(Om
i ,Om

j , Pos), ∼Clear(Om
i )

5 Relaxed Geometric Reasoning

Relaxed geometric reasoning consists in evaluating geomet-
ric conditions of actions without calling a motion planner.
It indicates that motion planning is likely to be feasible for
the selected actions if certain task constraints are met. The
reasoning process involves three modules: reachability rea-
soning which looks for a feasible kinematic solution for the
robot regardless of any attached object, spatial reasoning
which determines a valid pose for the manipulated object,
and manipulation reasoning which determines if grasping is
possible. They are described in detail next.

Reachability reasoning (Rrch): To move the robot to a
location described by a set of potential pre-grasping poses,
it is first required to find a valid goal configuration. This is
done by calling an Inverse Kinematic (IK) solver for each
potential pre-grasping pose and evaluating whether the IK
solution is collision-free or not. The reasoning procedure re-
turns the first collision-free IK solution found, if any, and
the corresponding pre-grasping pose. Failure may occur if
no IK solution exists or if no collision-free IK solution ex-
ists. In this latter case, the reasoning procedure reports the
collisionable objects, ordered such that those that are manip-
ulatable are returned first.

Spatial reasoning (Rsp): It is used to determine a proper
placement for an object within a given region without con-
sidering the robot. For the desired object, a pose is sampled
such that the object lies in the surface region and the ini-
tial stable posture is maintained. The sampled object pose

is then evaluated by a collision-checking module to deter-
mine whether it collides with other objects. If the sampled
pose is feasible, it is recorded in the geometry details of the
action which moves the object. Otherwise, another sample
will be tried. If all attempted samples are unfeasible, the
reasoner reports failure and the collisionable objects are re-
turned. Moreover, some other constraints are taken into con-
sideration while the sample placement is accomplished with
respect to the object features or final placement region limi-
tation, e.g., big or heavy objects are not allowed to be located
on the top of small or light objects.

Manipulation reasoning (Rmnp): It is used to choose the
grasp to be used to transfer an object from its current place-
ment to a valid goal placement (determined by Rsp). From
a set of grasps, the reasoning process uses Rrch reasoning
to verify that one of the possible ways to grasp the object
has a collision-free IK solution both at the current and the
goal placements, and it is returned. If there is no grasp sat-
isfying these constraints and the reason is due to collisions
and not to the IK problem, then the collisionable objects are
returned. In this work, prismatic objects are used with the
predefined top and side grasps, the latter at different heights
according to the object height.

For instance in Fig 1, it is supposed that the robot is
going to place object C within the shelf 2. If the object is
initially grasped from the top, there will be no valid con-
figuration for the robot to locate the object due to collision
with the shelf. On the contrary, if it grasps the object from
the side, it can find a feasible configuration to position the
object on the surface. Therefore, the reasoning process leads
to avoiding or reducing re-grasping operations.

Algorithm 1 describes the relaxed geometric function
when applying either the Move or MoveHolding action to
a given world W (describing the pose of the objects and
the configuration of the robot). Upon success, the positive
geometry details of the action are updated with the robot
configuration and the gripper pose. For the MoveHolding
action, the pose of the object is also added. Otherwise, the
algorithm returns in CO the set of objects whose collision
causes the failure of the action. This geometric reasoning is
not required for other manipulation actions as they only at-
tach or detach the object to/from the gripper. The evaluation
of the Move and MoveHolding actions is done as follows:

– Reasoning about the Move action [lines 5-8]: the pro-
cess is done by the function Rrch(W, a) [line 6], which
searches for a feasible robot configuration and store it in
Qrob if it finds one. In this case, Res is set to True and
the geometric information is stored in the geometric de-
tails of the action [lines 6-8]. Otherwise, it is set to False

and the CO causing the failure, is returned if any.
– Reasoning about the MoveHolding action [lines 9-16]:

the action is appraised by the functions Rsp(W, a) and
Rmnp(W, a,Om

i (posgoal)). The functionRsp(W, a) searches
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for a feasible object placement, sets Ressp to True if
found, and returnsOm

j (posgoal). Upon failure, it returns
False andCOmay be returned [line 11]. Then, the func-
tion Rmnp(W, a,Om

i (posgoal)) looks for a feasible goal
configuration and stores it in Qrob if found. Otherwise,
potential objects causing failure are returned in CO.

Algorithm 1: RelaxGeomReas(W, a)

1 CO ← ∅
2 a.geom+ ← ∅
3 i← 0
4 Res = False
5 if a.name = Move then
6 {Res,Qrob, CO, g} = Rrch(W, a)
7 if Res = True then
8 a.geom+.add(Qrob, g)

9 else if a.name = MoveHolding then
10 while i < Max do
11 {Ressp,Om

j (posgoal), CO} = Rsp(W, a)

12 if Ressp = True then
13 {Res,Qrob, CO, g}

= Rmnp(W, a,Om
i (posgoal))

14 if Res = True then
15 a.geom+.add(Qrob,Om

j (posgoal), g)

16 break

17 else
18 a is not required to be evaluated;
19 Res = True

20 return {a.geom+, Res, CO}

6 Heuristic Computation using Relaxed information

Both the heuristic value and helpful actions are computed
using relaxed symbolic information and relaxed geometric
reasoning. The purpose of using relaxed information is to
find a relaxed plan satisfying actions’ conditions in terms
of robot kinematics and object placement. Algorithm 2 il-
lustrates (for a given state S and goal G) how the computa-
tion of the heuristic and helpful actions of the standard FF
is modified to include geometric information. This is done
in three steps: computing the RPG and the relaxed plan π′,
evaluating π′, and computing the heuristic value along the
helpful actions, as detailed next.

Computing the RPG and π′ [lines 1-2]: At the begin-
ning, the RPG graph RPGgr containing state layers and ac-
tion layers is constructed by the function RPGConst [line 1].
The function RPGPlan extracts π′ from that graph [line 2].
This process is done as the standard FF carries out.

Evaluating π′ [lines 3-17]: The relaxed state is initiated
with the current geometric state of the world S.W and the

Algorithm 2: RPG(S,G)
1 RPGgr ← RPGConst(G)
2 π′ ← RPGPlan(RPGgr)
3 S′.W′

0 = S.W and S′.F ′ = S.F
4 foreach {a′ ∈ π′} do
5 while True do
6 W′ = SetRelaxWorld(a′)
7 if W′ 6= NULL then
8 {a′.geom+, Res, CO}←RelaxGeomReas(W′, a′)
9 if Res = True then

10 S′ ←NextRelaxState(a′)
11 break

12 else
13 if MaxUpdates(S) < Max then
14 S ← UpdateState(S,CO)
15 return RPG(S,G)
16 else
17 return {∞, ∅}

18 h(S)← HeuristicValue()
19 H(S)← HelpfulActions()
20 return {h,H(S)}

symbolic information of the state S.F [line 3]. Actions ap-
pearing in π′ are forwarded to the relaxed geometric reason-
ing for the feasibility check [line 8]. Upon success, action a′

is applied to compute the new relaxed state [line 10] accord-
ing to Eq.(2). The key question is in which relaxed world the
corresponding action has to be evaluated because multiple
copies of poses and configurations for objects and robot may
exist. This is tackled in the function SetRelaxWorld [line 6]
which chooses one of the feasible relaxed worlds, i.e., with
no collisions and meeting the precondition of the associated
relaxed action. At each successive call, the function returns a
different feasible relaxed world and returns NULL if no more
exist. In this latter case, the function MaxUpdates [line 13]
evaluates whether a predefined maximum number of trials to
update the current state and find another RPG plan is reached
or not. A new relaxed plan is then required [line 15] after up-
dating the current state by the function UpdateState [line 14]
according to the feedback of the geometric reasoner: in the
case of finding any CO, the ground atom isCrit(CO, Q′)
is added to the current state. Otherwise, the ground atom
UnReach(Rob, Q′) is added to the state regarding the corre-
sponding arm, and also Infeas(Pos′, Om

i ) is inserted if the
evaluated action is of type MoveHolding. Two examples are
given below to illustrate how task constraints (like critical
objects) and action details are determined.

Computing The heuristic value along with helpful ac-
tions [lines 18-19]: After the relaxed plan becomes feasible
in terms of lightweight geometry information, the heuris-
tic value and the set of helpful actions of the current state
are returned. The function HeuristicValue returns the heuris-
tic value h(S) [line 18] and the function HelpfulActions ex-
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tracts helpful actions H(S) [line 19]. This process is also
performed in a similar way to the standard FF.

Example 1: To illustrate the heuristic computation using
relaxed information, consider the scene in Fig 1 and let the
goal be to transfer object A to the middle region of the ta-
ble that it is occupied by object D. From the initial state of
planning, the following relaxed plan is first extracted:

π′0 = {MoveA, PickUpA, MoveHoldingA,
PutDownA} =⇒ h(Sinit) = 4

The selected actions are then forwarded to the relaxed
geometric reasoning check. The action MoveA is first eval-
uated using Rrch. The reasoner tries to acquire a feasible
Q in order to grasp object A. All attempted samples have
collisions with object H and there is not any other relaxed
world such that object H is in another position in order to
find a feasible grasping pose of object A. Then, the con-
straint isCrit(H , Qa) is asserted to the initial state and the
heuristic computation is restarted again and the following
plan is retrieved:

π′1 = {MoveH, PickUpH, MoveHoldingH,
PutDownH, π′0} =⇒ h(Sinit) = 8

As it can be seen, the heuristic value is increased. The
feasibility of actions are investigated. The reasoning process
is able to find geometric details for the actions Move and
MoveHolding applied to object H. But, the spatial reasoning
process is not able to find any valid placement for object A
when the action MoveHoldingA is being evaluated due to
collisions with the object D and there is not any relaxed
world where this object is located away from this region.
Therefore, the constraint isCrit(D,Qa) is added to the state.
Similarly, the heuristic computation is repeated and the fol-
lowing relaxed plan is obtained:

π′2 = {MoveD, PickUpD, MoveHoldingD,
PutDownD, π′1} =⇒ h(Sinit) = 12

When this relaxed plan is forwarded to the reasoning
process, it can find feasible geometric details for all the re-
laxed actions. So, the corresponding heuristic value and help-
ful actions are achieved. In this way, the integration of the
relaxed reasoning process with the heuristic function leads
to provide the informed heuristic value taking into account
task constraints.

Example 2: Another advantage of considering geomet-
ric evaluation in the heuristic computation phase is to report
failure in the case of selecting invalid geometric values for
the actions. This case avoids the consideration of geometric
backtracking which goes to the previous states in order to
reselect their geometric values. Let’s consider the example
represented in Fig 3.

The goal is to move the right arm to a feasible grasping
configuration of object A. The left part of the scene shows
the initial state and the right side presents one feasible ma-
nipulation relaxed world after applying the MoveHolding re-
laxed action. The symbolic relaxed solution plan taking into

account geometric constraints is shown as well. The action
locates the object in posb2. When the geometric information
of the last relaxed action MoveRA is going to be evaluated, it
figures out there is no feasible world making this action fea-
sible either with object B placed in position posb1 or posb2.
The reasoning process so reports the collisionable object B,
and again the heuristic computation is restarted to find a fea-
sible geometric assignment for locating object B.

7 Planning in the state space

A manipulation plan is found using state space search as in
the classical FF algorithm. The difference lies in the heuris-
tic function which includes geometric reasoning, and the
fact that action selection must be confirmed by the motion
planner. The pseudocode of this process is presented in Al-
gorithm 3. It is worth noting that there is no pre-processing
step assigning geometric details (object placements or robot
grasp configurations) to the symbols: geometric details are
resolved during relaxed geometric reasoning. It gets T as
input and returns π if applicable. First, the trials counter
trial is initialized [line 1] and the state Si gets the initial
state [line 4]. The function Search implements the standard
FF search process using EHC or BFS [line 6]: it returns the
next hybrid state (see Eq.(1)) to visit Si+1 along with helpful
action(s) or action(s) with lowest heuristic value HSi . This
value is computed with the modified RPG function (see Al-
gorithm 2), hence taking geometric constraints into account.

If no actions resulting in a state with lower heuristic
value [line 7] can be found, the algorithm tries the whole
process again by taking into account previous trials. As long
as the maximum number of iterations is not reached [line 9],
the process is repeated with the initial state updated by the
function UpdateInitState [line 11]. This function samples ran-
dom geometric states while taking all the constraints identi-
fied so far into account. If the maximum number of trials is
reached, the process returns failure [line 14].

With an arbitrarily high value for Max , the probabil-
ity that all possible object poses and robot configurations
be considered gets close to 1. However, although Search
[line 6] is complete and MotionPlanner [line 16] is proba-
bilistically complete, overall completeness is lost since mo-
tion planning runs with a cut-off time, and it is never queued
for further refinement in case of failure [lines 20-21].

The MotionPlanner function is used to compute a collision-
free path for the currently selected action(s) [line 16]. If
a path is found, Res is set to True and the path Q is re-
turned. Then π is appended with the action(s) [line 18]. Oth-
erwise,Res is false andCOmay contain colliding object(s).
If collision(s) are detected, the state is updated with ground
atom(s) isCrit(CO, Q′), otherwise simply with the ground
atom UnReach(Rob, Q′), and the algorithm keeps searching
until other HSi are considered.
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Fig. 3: Example of reporting an unfeasible geometric value for the placement of an object. Blue objects are fixed and the red
ones are manipulatable and the labels in the scene involve the geometric details of objects. The characters L and R show the
action applied to the left and right arms respectively. The goal is to transfer the right arm to object A. The successive relaxed
worlds that result from relaxed actions in π′ that add geometric details are shown.

.

8 Evaluation

8.1 Implementation

The proposed framework implementation consists of three
components: task planning, relaxed geometric reasoning, and
motion planning. Task planning is implemented using a mod-
ified version of the FF planner developed in C++. Relaxed
geometric reasoning and motion planning use the Kautham
Project1 (Rosell et al, 2014), a C++ based open-source tool
for motion planning, that enables to plan under geometric
and kinodynamic constraints. It uses the Open Motion Plan-
ning Library (OMPL) (Sucan et al, 2012) as a core set of
sampling-based planning algorithms. In this work, the RRT-
Connect motion planner is used for motion planning. This
planner is one of the most efficient motion planners, but it
does not guarantee optimal motions. The Kautham Project
involves different collision checking modules to detect robot-
object and object-object collisions, and features a placement
sampling mechanism to find feasible object poses in the work-
space. For IK computations, it uses the approach developed

1 https://sir.upc.edu/projects/kautham/

by (Zaplana et al, 2018). Relaxed geometric reasoning uses
these modules in order to find feasible sample geometric in-
stances for symbolic actions. The communication between
task, relaxed geometric reasoning, and motion planning mod-
ules is done via Robotic Operating System (ROS) (Quigley
et al, 2009).

8.2 Empirical Results and Discussion

All experiments were run on an Intel Core i7-4790U 4.00
GHz CPU machine with 32 GB memory. The platform used
is the two-arm Yumi robot (with 7 degree-of-freedoms per
arm and two finger grippers). Two different classes of table-
top manipulation problems were used for validation: con-
strained problems, and cluttered table manipulation prob-
lems in which the object to be grasped is surrounded by
many other objects.

Heuristic computation was made more efficient by caching
the computation of geometric details. As there are multiple
calls to the heuristic function from each state, geometric val-
ues can be stored and reused for similar relaxed actions in
different relaxed plans.
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Algorithm 3: The Proposed TAMP Algorithm
inputs : T =〈D,S0,G〉, D=〈A,F ,W, Acc, Sg〉
output: π

1 trial← 0
2 i← 0
3 π ← ∅
4 Si ← Sinit
5 while G 6⊆ Si do
6 {HSi , Si+1} ← Search(Si,G,A))
7 if HSi = ∅ then
8 trial← trial + 1
9 if trial < Max then

10 i← 0
11 Si ← UpdateInitState()
12 Continue
13 else
14 return fail

15 else
16 {Q, Res, CO} = MotionPlanner(HSi)
17 if Res = True then
18 π.append(HSi)
19 else
20 Si ← UpdateState(CO)
21 Continue

22 i← i+ 1

23 return π

Regarding the first class of manipulation problems, the
scenario explained in Fig 1 has been implemented and val-
idated in simulation. The problem consists of various types
of objects and is non-monotonic, i.e., target objects have to
be temporarily placed in regions which are not specified as
goal regions, and occluding objects need to be moved out of
their initial pose in order to free space in these temporary
locations. Some snapshots of the execution are displayed in
Fig 4. Detecting various types of task constraints, the ap-
propriate geometric details, as well as the correct order of
actions play an important role in this manipulation problem,
which is mostly done in heuristic computation. The perfor-
mance of the problem is illustrated in Fig 5 in terms of av-
erage time of total manipulation planning and motion plan-
ning, and also the reachability, spatial, and manipulation rea-
soning. The solution task plan is composed of 33 actions and
the success rate is 96%. The parameters used are the follow-
ing: the number of pre-grasping poses per object used for
reachability reasoning is 20; the number of sample poses for
spatial reasoning is 20; the Max threshold is 20 in algorithms
1 and 2, and 5 in algorithm 3.

Regarding the second class of problems, several scenes
containing from 15 to 40 objects have been used and com-
pared with the approach presented in (Srivastava et al, 2014)
and (Muhayyuddin et al, 2018). In order to make the prob-
lems more challenging, only side-grasps are used to pick up
objects. The clutter table problem for 15 objects is repre-
sented in Fig 6 which has been evaluated in simulation and

in the real environment. In this type of problems, it has been
observed that both robot arms can collaborate to free the
path towards the target object, like the problem shown in
Fig 7. The clutter table problem where the goal is to hold
the red object surrounded by 40 objects is displayed in Fig 8.
This problem is in essence similar to the problems used in
(Srivastava et al, 2014) and (Muhayyuddin et al, 2018).

Table 1 summarizes the comparison between the current
proposal (HTAMP) and the work in (Srivastava et al, 2014)
(labeled here as Ap1) and the work in (Muhayyuddin et al,
2018) (labeled as Ap2) in terms of success rate and planning
time. We observed that the HTAMP approach has efficiently
solved the clutter table problems in both terms as compared
with the Ap1 approach. One of the main reasons is that
HTAMP detects the task constraints in the heuristic com-
putation phase and selects carefully the objects placements
in advance of calling motion planning. On the contrary, Ap1
does first symbolic task planning, calling a motion planner
that feeds back constraint to the state. Moreover, Ap1 may
require to manipulate the objects more than once. The aver-
age time of the reachability, spatial, and manipulation rea-
soning, and also motion planning for this type of problem is
shown in Table 2. As it can be seen, the relaxed geometric
reasoning time increases according to the difficulty of the
problem when the number of objects increases. This is due
to the fact that the relaxed geometric process requires more
effort to find valid geometric details for grasping as well as
for placement of objects on the table.

In comparison to Ap2, HTAMP is also able to solve
more efficiently cluttered problems with increasing num-
ber of obstacles in the workspace. The approach Ap2 is a
randomized physics-based motion planner designed to plan
grasping motions in cluttered environments, when the ex-
act final placement of the objects is not relevant. The ap-
proach does not rely in a combination of task and motion
levels, and no high-level explicit reasoning is done. Instead,
robot-object and object-object interactions are allowed to
push away those objects obstructing the way toward the ob-
ject to be grasped. We observe that HTAMP scales better
with the increasing number of objects regarding planning
time, although the execution time can be worse if many ob-
jects have to be removed.

The proposed approach can be extended to consider other
manipulation problems in which push or pull actions are
required. To tackle this, those symbolic actions have to be
defined in the action space, and also the relaxed geometric
reasoning can be extended in order to compute feasible ge-
ometry information for the new actions.

Robotics manipulation problems become more challeng-
ing when the robot is required to place several objects in lim-
ited goal regions where placements of objects are critical.
In such case, a large number of different object pose sam-
ples may be needed to determine the best feasible ones. This
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(1) (2) (3)

(4) (5) (6)

Fig. 4: The sequence of the snapshots of the execution for the 3D world problem. Video: https://sir.upc.es/
projects/kautham/videos/HTAMP-3D.mp4

Fig. 5: The average time related to total manipulation plan-
ning and motion planning, and also reachability, spatial, and
manipulation reasoning for 30 runs.

could decrease the performance of HTAMP since the num-
ber of combinations can grow very large (as it is the case for
packing problems). Therefore heuristic computation could
be slower, or the planner could have to restart several times
if no feasible combination of object poses is found.

Problem Success rate % Av. planning time
Ap1 Ap2 HTAMP Ap1 Ap2 HTAMP

Clutter 15 100 100 100 32 9.1 10.1
Clutter 20 94 100 100 57 16.7 11.8
Clutter 25 90 96 100 69 26 15.3
Clutter 30 84 90 100 77 41.2 18.2
Clutter 35 67 73 95 41 49.6 19.3
Clutter 40 63 60 95 68 71.6 21.8

Table 1: Comparison of HTAMP with two different ap-
proaches. Ap1 presented in (Srivastava et al, 2014) and Ap2
presented in (Muhayyuddin et al, 2018).

Problem Rch-reas Sp-reas Manip-reas Motion planning
Clutter 15 0.8 0.11 1.01 5.74
Clutter 20 1.12 0.21 1.9 6.41
Clutter 25 1.45 0.32 2.45 8.42
Clutter 30 1.59 0.49 3.6 10.63
Clutter 35 2.17 0.71 3.95 9.81
Clutter 40 3.07 1.05 5.17 10.1

Table 2: The average total reachability, spatial, and manipu-
lation reasoning, and also motion planning time of the clut-
tered environment problems.

9 Conclusion

To solve manipulation problems for bi-manual robots, a com-
bined heuristic-based task and motion planning approach
that looks for the plan in the state space has been proposed.
The main challenge was to provide low-level geometric in-
formation for guiding the task planner. The proposed idea

https://sir.upc.es/projects/kautham/videos/HTAMP-3D.mp4
https://sir.upc.es/projects/kautham/videos/HTAMP-3D.mp4
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(a-1) (a-2) (a-3) (a-4) (a-5) (a-6)

(b-1) (b-3)(b-2) (b-4) (b-5) (b-6)

Fig. 6: The sequence of the execution snapshots for the cluttered manipulation problem where the Yumi robot has to grasp
the red object among 15 ones in the environment. The problem has been implemented in simulation (a-1 to a-6) and the real
environment (b-1 to b-6). Video: https://sir.upc.es/projects/kautham/videos/HTAMP-15.mp4

(1) (2) (3)

(4) (5) (6)

Fig. 7: The sequence of the snapshots of the execution for
the cluttered manipulation problem where the Yumi robot
has to grasp the red object among 20 ones in the envi-
ronment. Video: https://sir.upc.es/projects/
kautham/videos/HTAMP-20.mp4

is to use the FF heuristic state-space task planner, which
was modified so that its heuristic function takes geometric
constraints into account through various geometric reason-
ing procedures.

During the heuristic computation, a relaxed geometric
problem is addressed, which considers only certain types
of task constraints. Therefore, the heuristic function is able
to guide state space search towards geometrically feasible
states. Once an action has been selected in the state space,

(1) (2) (3)

(4) (5) (6)

Fig. 8: Some sequence of the snapshots of the execution for
the cluttered manipulation problem where the Yumi robot
has to grasp the red object among 40 ones in the envi-
ronment. Video: https://sir.upc.es/projects/
kautham/videos/HTAMP-40.mp4

the motion planner is called to confirm this choice by com-
puting a collision-free path.

Using this technique, the proposed approach is able to
find feasible manipulation plans without geometric pre-computation,
and without geometric backtracking. The proposed approach
has been validated with various classes of table-top manip-
ulation problems of different complexity, and a thorough
comparison with recent approaches is presented. The pro-
posal has been implemented and evaluated in simulation and
through real experiments. The results show that the approach

https://sir.upc.es/projects/kautham/videos/HTAMP-15.mp4
https://sir.upc.es/projects/kautham/videos/HTAMP-20.mp4
https://sir.upc.es/projects/kautham/videos/HTAMP-20.mp4
https://sir.upc.es/projects/kautham/videos/HTAMP-40.mp4
https://sir.upc.es/projects/kautham/videos/HTAMP-40.mp4
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can solve manipulation tasks efficiently both in terms of
planning time and success rate.

As future work, the integration of semantic knowledge
with the planning process is envisioned, which will allow to
flexibly apply the proposed approach to problems involving
manipulation of objects with various attributes and specific
manipulation constraints. Also, we may consider alternative
task planning techniques, such as contingent planning, as
a way to cope with uncertainty and achieve better perfor-
mance in real situations.
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