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Abstract—For everyday manipulation tasks, the combination
of task and motion planning is required regarding the need of
providing the set of possible subtasks which have to be done
and how to perform them. Since many alternative plans may
exist, the determination of their feasibility and the identification
of the best one is a great challenge in robotics. To address this,
this paper proposes: a) a version of GraphPlan (one of the best
current approaches to task planning) that has been modified
to use ontological knowledge and to allow the retrieval of all
possible plans; and b) a physics-based reasoning process that
determines the feasibility of the resulting plans and an associated
cost that allows to select the best one among them. The proposed
framework has been implemented and is illustrated through an
example.

Index Terms—Task planning, Physics-based motion planning,
Reasoning, Manipulation.

I. INTRODUCTION

Autonomous robots, like mobile manipulators, are currently
setting new challenges for robot manipulation tasks in human-
like environments. The complete performance of a manipula-
tion task consists in the execution of a sequence of actions,
which requires planning at task and motion levels. Both
task and motion planning are, therefore, of great importance
and play a considerable role in finding feasible solutions to
manipulation problems, and the sharing and interaction of
information through planning levels is of crucial importance
for providing efficient solutions. The combination of task and
motion planning has been centered mainly around the task
planning techniques of Hierarchical Task Networks (HTN) and
GraphPlan, reviewed in Section III, e.g. [1][2][3][4].

On the other hand, manipulation involves the interaction
between objects and, in this scope, physics-based processes
have a valuable significance in order to: a) allow motion
planning strategies to incorporate (using dynamic simulation)
possible interactions between rigid bodies; b) reason about
the feasibility of the actions provided by the task planner. In
this line, for instance, a physics-based temporal projection for
manipulation tasks has been proposed to provide reasoning on
stability, visibility, and reachability of robot motions [5], or
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a manipulation planning framework has been proposed where
physics-based motion planning is enhanced with ontological
knowledge reasoning on motion constraints [6].

From what has been stated, the combination of task planning
with physics-based motion planning and reasoning arises as
an interesting issue. One of the possible strategies is to use
physics-based motion planning and reasoning to evaluate the
feasibility and the cost of a set of plans possibly provided by
the task planner. A proposal in this line, but without consid-
ering physics-based issues, was the Task Motion Multigraph
(TMM [7]), that runs in parallel the search of solution paths
corresponding to alternative sequences of actions given by a
task planner.

With this in mind, the current paper presents a framework
to combine physics-based reasoning with task and motion
planning to find the best feasible sequence of actions to solve
a given task. The task planner employs a modified version
of the GraphPlan algorithm that uses ontological knowledge
and allows the retrieval of all possible plans. These plans are
forwarded to the physics-based reasoning in order to determine
their feasibility by measuring the cost of the corresponding
sequence of actions. The proposed framework has been imple-
mented and is illustrated with a simple manipulation problem.

II. PROBLEM STATEMENT AND SOLUTION OVERVIEW

Consider a mobile robot that can perform two types of
actions: to move around freely and to push manipulatable
obstacles. Then, the problem to be tackled is to find the best
feasible sequence of actions to bring the robot, among fixed
and manipulatable obstacles, from an initial region towards a
goal one. Collisions with fixed obstacles are not allowed, while
if necessary, manipulatable obstacles can be pushed away. As
an example, Fig. 1 shows a two-room scenario with a wall as
a fixed obstacle, three manipulatable obstacles (A B and C,
with associated regions from where they can be pushed) and
an initial and a goal region.

The proposed solution is based on a two-step procedure. The
first one, described in Section III, finds all possible sequences
of high-level actions; the second one, described in Section IV,
computes how to perform these actions and evaluates the
feasibility based on a physics-based simulation. To perform
the first step, the GraphPlan task planning algorithm has been
modified to retrieve all possible plans and to use ontological
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Fig. 1. A manipulation problem where a robot must find the best path from an
initial region to a goal one avoiding the fixed wall in the middle and pushing
the manipulatable obstacles A, B and C, if necessary, to clear the corridors
(dashed regions).

knowledge. To perform the second step, a physics-based
motion planner has been used and a cost for each type of
action has been defined. Implementation details are presented
in Section V where the results corresponding to the problem
of Fig. 1 are discussed.

The present paper is a first step towards a more comprehen-
sive framework that: 1) considers a wider set of actions, like
pick and place; 2) tightly combines task and motion planning
levels by interleaving the physics-based evaluation within the
search of the sequence of actions.

III. TASK PLANNING

Robot task planning is devoted to finding an ordered
sequence of actions (i.e. organized in terms of constraint
satisfaction between them), that allow a robot to perform a
given task. There has been a significant amount of study
in task planning, as reported in [8], comprising a variety of
different automated task planning strategies. Some of the best
ones are the Hierarchical Task Network (HTN) [9] and the
GraphPlan [10]. The former approach establishes a network to
assign possible preconditions of actions (which can be either
primitive or compound). To find a plan, tasks are decomposed
and grow in a search space until primitives actions satisfying
preconditions are met. The GraphPlan technique, on the other
hand, constructs a search space of plans with the form of
a graph (detailed in the next subsection) and establishes a
sequence of levels incrementally expanded through the search
space. The main advantages of GraphPlan-based planners
is the ability to analyze combinations of action to satisfy
the task, the ability to evaluate multiple ways to reach the
goal, and the ability to run parallel actions at a time. This
paper proposes a variant of the GraphPlan planning strategy
integrated with ontological knowledge. Next subsections first
present an overview of the GraphPlan and of the concept of
ontologies, and then explain how manipulation knowledge is
coded using an ontology and how the standard GraphPlan
algorithm is modified to allow the retrieval of all possible
plans.

A. GraphPlan Overview

The GraphPlan constructs a planning structure, called Plan-
ning Graph, where state-levels (representing sets of literals)
and action-levels (representing possible actions applied on the
previous state-level) are interleaved. Each action-level also
contains maintenance actions to maintain literals unchanged
for the next level. Edges in the graph join literals and actions of
consecutive levels. Different constraints between actions and
between literals may exist. Two actions are constrained when:

¢ An effect of one action negates an effect of the other
action. It is called inconsistent effect constraint.

« An effect of one action deletes a precondition of the other
action. It is called the interference constraint.

o They have mutually exclusive preconditions. It is called
competing needs constraint.

Two literals, moreover, are constrained if:

e One of them is the negation of the other one. It is called
the inconsistent support constraint.

The search space procedure extends consecutively the levels in
the graph until all the goal conditions appear in the last created
state-level. When this happens, a solution may be possibly
found by a backward search. If it fails because not all the
constraints are satisfied, then the extension procedure resumes.
A Planning Graph with five state levels (corresponding to the
problem shown in Fig. 1) is drawn in Fig. 2 where, for clarity,
the constraints are not shown nor the edges connecting the
levels. the graph will further be commented in Section III-D.

B. Concept of Ontology

An ontology classifies knowledge within a particular domain
and enables a flexible access to it by describing things with
associated relations. An ontology can be divided into compo-
nents: classes, individuals, properties, attributes, and axioms.
Classes (also called concepts) specify collections or types of
different objects that share common properties. Individuals
(also referred to as instances) demonstrate specific elements
of classes. Properties express how classes and individuals are
related to one another. Attributes define unique properties,
features, and particular characteristics of objects. Axioms set
constraints on the values of classes and individuals. Ontologies
are encoded using the Web Ontology Language (OWL) [11].
The purpose of OWL is to collect and classify ontology-based
knowledge on a world-wide accessible database represented
by an XML-based file format aiming to share such knowledge
over multiple systems or devices. Ontologies can be created
using the Protégé editor [12]. Protégé is an open source
platform that is able to provide a flexible ontology editor in
order to facilitate design of knowledge-based applications.

To access knowledge encoded with the OWL, a knowl-
edge processing framework for robotic systems called
Knowrob [13] can be used. Knowrob is a potent reasoning
tool that works over ontological knowledge. It has been
implemented based on the Semantic Web library and SWI
Prolog, enabling the access of Prolog predicates to obtain
the knowledge accumulated within the OWL. Thus, Knowrob



enables a flexible access to ontological knowledge to facilitate
the inference process.

C. Ontology-based Task Planning for Manipulation

The present work codes the knowledge of a manipulation
task by defining an ontology with OWL. This ontology will
contain the information related to the objects (like for instance
their dynamical properties or the parts from where they can
be pushed), or to some regions of the workspace (like for
instance the initial and goal regions, the critical regions that
cannot be occluded, etc.), and will be accessed by the task and
motion planners. The ontology is structured with the following
classes:

1) Class “States” represents the conditions that are satisfies
by a state of the world. It includes the subclasses
InitialState and GoalState related to the problem to be
solved.

2) Class “Path” defines an abstract path connecting two
regions (the actual path can be obtained by querying a
motion planner) such as P/ and P3 in Fig. 1.

3) Class “Regions” defines different types of regions:
ManipulatableRegion, CriticalRegion, and GoalRegion.
ManipulatableRegion associated to an object is the re-
gion where the robot should be located in order to
apply forces to push it. CriticalRegion represents regions
which should be free from obstacles, e.g. corridors
shown in Fig. 1 or the manipulatable region of an object
that should be pushed away. GoalRegion represents the
region where the final position of the robot should be.

4) Class “Predicates” represents the predicates required
to set the properties of the states and actions. Three
predicates have been defined as subclasses:

e HasAccess(Robot, Path): Returns true if the Robot
is located at the initial region of the Path.

o Af(Robot, Region, Path): Says whether the Robot
has reached the Region through the Path.

o In(Object, Region): Returns true if the Object is at
the Region.

5) Class “ActionProperties” defines actions, action precon-
ditions (what should be satisfied before executing an
action) and action effects (what should be added/deleted
to the world state after executing an action). Two actions,
Move and Push, have been defined as subclasses of class
“ActionProperties”, as well as their preconditions and
postconditions. The Move action is used to transfer the
robot to different regions (which may include the goal
or manipulatable regions) through a path obtained by
a motion planner. The Push action is applied to move
objects to clear the way and facilitates the connection
between paths.

e Move(Robot, Region, ThroughPath):
Precondition: HasAccess(Robot, ThroughPath)
Add: Af(Robot, Region, ThroughPath)

Delete: _

e Push(Robot, Obj, ManipRegion, CriticalRegions,
ToAccessPath, ThroughPath):
Precondition: In(Obj, CriticalRegions),
At(Robot, ManipRegion, ThroughPath)
Add: HasAccess(Robot, ToAccessPath)
Delete: In(Obj, CriticalRegions)

6) Class “ObjectProperties” sets information about the
type of objects (and the robot) and their locations in
the world.

D. The GraphPlan variant

The standard GraphPlan algorithm builds the Planning
Graph until the last state level satisfies all the goal conditions,
and then the backtracking process searches for the sequence
of actions satisfying all the constraints. If found, the solution
plan is the shortest sequence of actions that solve the problem,
irrespective of its feasibility or cost (e.g. the solution may
content a push action which cannot be executed due to the
weight of the object to be pushed). To allow the GraphPlan
algorithm to retrieve all the possible plans, a lightweight
reasoning process over the knowledge has been implemented
to identify other conditions (called possible conditions) that
should be met at the initial and the goal states. The Planning
Graph grows until a state level is found that satisfies all
possible conditions and the backward search is then applied
from each possible condition in order to find all alternative
plans.

As an example, the problem in Fig. 1 shows that the initial
region has access to two alternative paths, P/ and P3 (i.e.
the initial action of a plan may be to move the robot towards
object A following path P/ or alternatively moving towards
object C following path P3). Therefore these paths become
possible conditions for the initial state:

I =[HasAccess(robot, pl), HasAccess(robot,p3),
In(objA, manipulatableRegionM g1 ), In(objB, corridorl),
In(objC, corridor2)]

A similar procedure can be applied to the goal state as
well, where it can be seen that the goal region can be reached
through two alternative paths, P4 and P5. Then:

G =[At(robot, goalregion, p4), At(robot, goalregion, p5)]

For the example in Fig. 1, the resulting Planning Graph
generated by this variant of GraphPlan is shown in Fig. 2.
At each state level, predicates are labeled with numbers, and
at each action level actions are labeled with the predicates
they connect (not counting the maintenance action that applies
to all the predicates). The search space provides five state
levels. From the last state level, backtracking is done starting
at two possible goal conditions, At(robot, goalregion, p4) and
At(robot, goalregion, p5). The states encountered during back-
tracking in which the robot plays a role have been highlighted
in Fig. 2, and the corresponding plans are depicted in Fig. 3.
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Fig. 3. Plan A (left) and plan B (right) resulting from the modified GraphPlan
algorithm.

IV. PHYSICS-BASED REASONING
A. Physics-Based Motion Planning

The basic purpose of motion planning is the computation
of an appropriate trajectory from a start to a goal configura-
tion in the configuration space, while satisfying a given set
of constraints. Sampling-based motion planning algorithms,
like the Rapidly exploring Random Trees (RRTs) or the
Kinodynamic Planning by Interior-Exterior Cell Exploration
(KPIECE), give very efficient results and are well suited
for kinodynamic motion planning. They can easily consider
systems with differential constraints and cope with nonlinear
dynamics [14], [15].

Typically, motion planning algorithms focus on comput-
ing collision-free trajectories, but some variants, known as
physics-based, have been designed to also consider the pur-
poseful manipulation of the static objects in the environment,
e.g. [16]. These algorithms modify the state propagator of
a kinodynamic motion planer to consider the result of the
interaction between rigid bodies using a rigid body dynamic
simulators such as the Open Dynamic Engine (ODE) [17] or
Bullet [18].

The physics-based motion planning will be used to plan both
move and push actions, and an associated cost, detailed in the
following subsection, will be set to evaluate the feasibility of
a plan.

B. Cost functions

The physics-based reasoning about a high-level plan (com-
posed of a sequence of move and push actions) involves the
dynamical properties of the robot and of the environment,
such as masses of the objects, required manipulation forces,
friction, etc. The feasibility of a plan will be set according to

Knowledge
(OWL)

' Task Planning " Motion Planning

Task Planner Motion Planner

Open Dynamic

Physics-Based Reasoner Engine

Fig. 4. Implementation framework for task and motion planning using
physics-based reasoning

its cost that will be computed according to the following cost
functions:

e Push cost: Tt is the total amount of power consumed to
complete the push action (i.e. to clear the region the
object is occupying) by applying repetitively the same
force: td

n

¢ =27 M)
where f represents the force applied by the robot for At
duration, d is the corresponding displacement covered
by the object, and n is the number of times the force is
applied in order to complete the push action and clear
the region. If the object is too heavy to be pushed by the
robot, then this cost will be set to infinity.

e Move cost: It is the total amount of ‘“action” (i.e. the
dynamical attribute of a physical system that considers
the history of moves and that has units of Newton-meter-
second):

em =Y |fi|Atio; (@)
where fp,...,f, are the controls (forces) to be applied
to follow the path and p; represents the distance covered
when applying force f;. If the motion planner is not able
to find a path, then this cost will be set to infinity.

Let CJ and CJ, be the total push and move costs of plan j:

Ny,
¢ o= > d.
k=1
No,
o= S d, 3)
k=1

with Ny,,; and N,,; being the total number of push and move
actions of the jth plan, respectively. Then, based on these
costs, a Task-feasibility parameter is defined for each plan as



Cost Plan A Total
Move (N-m-s) 0.07903 ] 0.01401 [ 0.03955 [ 0.13259
Push (J/s) 7.46064 9.46279 16.92343
Task-feasibility 091585
parameter
Cost Plan B Total
Move (N-m-s) 0.05736 | 0.09372 0.15108
Push (J/s) 17.73759 17.73759
Task-feasibility 10
parameter i
TABLE T
EVALUATION OF COST PLANS.
follows:
cy CJ
aj:M—pk+(1— —mk 4)
maxvke(1,N] Cp maXvke(1,N] Cr

with p € [0, 1] being a weighting factor and N the number of
alternative plans.

The best plan will be the one with the lowest Task-feasibility
parameter.

V. IMPLEMENTATION FRAMEWORK AND SIMULATION
RESULTS

The proposed framework for task and motion planning,
shown in Fig. 4, consists of a knowledge module, a task
planing module and a motion planning module. All them
communicate with each other through a ROS-based commu-
nication layer:

o The knowledge is coded in the form of an OWL ontology
and it consists of: a) knowledge about the world, i.e.
information on the type of objects (manipulatable or
fixed) and if manipulatable, on the regions from where
they can be pushed (manipulatable regions), and their
poses (position and orientation); b) physical properties
(objects masses, friction coefficients, minimum manipu-
lation forces, etc.).

e The task planning module consists of two sub-modules:
the task planner (that uses the variant of GraphPlan
explained in subsection III-D) and the physics-based
reasoner (that evaluates the plans as detailed in IV-B in
order to select the best one).

e The motion planning module is used to determine the
effect of each action in the dynamic world and to ex-
ecute the plan. The implementation of this module is
performed using The Kautham Project [19], that is a
motion planning tool based on the Open Motion Planning
Library (OMPL [20]) which provides the implementation
of many sampling-based planners like RRT and KPIECE.
The dynamic simulations are performed using ODE.

e The communication layer shares information between
different layers. This layer involves ROS [21] to provide
the basic communication protocols, and the Knowrob and
the Json-prolog library (provided by Knowrob) to enable
the access to the ontological knowledge and Prolog
predicates through the ROS communication protocols.

In order to illustrate the proposal, the problem set in Fig. 1
has been modelled using The Kautham Project. The scenario

1 2 3
4 5 §)
7 8 9

Fig. 5. Simulation results of the execution of plan A.

consists of a robot (green sphere), three manipulatable bodies
(red and yellow blocks), and a fixed body (white block). As
discussed before, the modified version of GraphPlan retrieves
the two possible plans that were shown in Fig. 3. The KPIECE
motion planning algorithm (with the physics-based state prop-
agator based on ODE) has been used, and some snapshots
of the executions of both plans are illustrated in Fig. 5 and
Fig. 6. Table I shows the cost of each action and the Task-
feasibility parameter of each plan using p = 0.5. The total
move and push costs of plan A are lower than those of plan
B and result in a lower Task-feasibility parameter. Plan A is,
therefore, the selected one. Note that plan B has less actions
and would have been the unique plan found by the standard
GraphPlan algorithm.

VI. CONCLUSION

This paper has proposed a framework to take into account
physics-based reasoning in manipulation planning. A modified
version of the GraphPlan algorithm is first proposed in order
to provide all possible plans and, afterwards, a physics-based
reasoning process is applied to determine the feasibility of
each plan in terms of the action costs. The proposal has been
implemented and illustrated with a simple example.

The present proposal considers a mobile robot with move
and push action capabilities. The extension to manipulators
with pick and place capabilities is under development. Also,
the substitution of the two-step procedure by a tight combi-
nation of the task and motion planning levels is under study,



Fig. 6. Simulation results of the execution of plan B.

i.e. the use of the physics-based evaluation to condition and
accelerate the search of the sequence of actions.
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