
The Kautham Project: A teaching and research tool
for robot motion planning

Jan Rosell, Alexander Pérez, Akbari Aliakbar, Muhayyuddin, Leopold Palomo and Néstor Garcı́a
Institute of Industrial and Control Engineering (IOC)

Universitat Politècnica de Catalunya (UPC) – Barcelona Tech
Barcelona, Spain, jan.rosell@upc.edu

Abstract—This paper presents the software tool used at the
Institute of Industrial and Control Engineering (IOC-UPC) for
teaching and research in robot motion planning. The tool allows
to cope with problems with one or more robots, being a generic
robot defined as a kinematic tree with a mobile base, i.e.
the tool can plan and simulate from simple two degrees of
freedom free-flying robots to multi-robot scenarios with mobile
manipulators equipped with anthropomorphic hands. The main
core of planners is provided by the Open Motion Planning
Library (OMPL). Different basic planners can be flexibly used
and parameterized, allowing students to gain insight into the
different planning algorithms. Among the advanced features the
tool allows to easily define the coupling between degrees of
freedom, the dynamic simulation and the integration with task
planers. It is principally being used in the research of motion
planning strategies for hand-arm robotic systems.

I. INTRODUCTION

The recent software development in robotics, focused in
valuable concepts of software engineering like reusability,
genericity and interoperability, is greatly contributing to the
improvement of the performance and capabilities of robotics
systems. For instance, middleware frameworks, like ROS [1]
and OROCOS [2], offer low-level control, hardware abstrac-
tion, and inter-process communications. Regarding simulation,
several contributions are emerging as well. For example, we
can find packages devoted to specific robotic tasks, like Open-
GRASP [3] which is focused in grasping and dexterous manip-
ulation, or others devoted to more general robotic tasks, like
V-REP [4], which is focused to offer efficient real simulations
including real-world physics, the simulation of sensor data, or
of surface cutting or of paint or welding seams, or MoveIt! [5],
which is focused in general mobile manipulation issues includ-
ing motion planning, manipulation, 3D perception, kinematics,
control and navigation. Regarding motion planning issues,
MoveIt! uses the Open Motion Planning Library (OMPL) [6],
which codes a wide set of the state-of-the-art sampling-
based motion planning algorithms at an abstract level, i.e.
without including issues related to robot modelling, collision-
check or visualization. Regarding visualization MoveIt! can
use the ROS visualizer, RViz, or Gazebo [7], a robot simulator
that offers the ability to accurately and efficiently simulate

This work was partially supported by the Spanish Government through the
projects DPI2010-15446, DPI2011-22471 and DPI2013-40882-P. A. Pérez is
also with the Escuela Colombiana de Ingenierı́a “Julio Garavito”, Bogotá,
Colombia.

populations of robots in complex environments using a robust
physics engine and high-quality graphics.

At the Institute of Industrial and Control Engineering (IOC-
UPC) we have been working in motion planning for many
years, both in teaching and research activities. This work has
lead to the development of The Kautham Project, whose aim
is to provide an environment for testing and developing mo-
tion planning algorithms, since none of the existing software
completely met all our needs. From the teaching perspective
we required the availability of a wide range of planners, the
possibility to flexibly use and parameterize planners, and the
capacity to visualize 2D configuration spaces, with the aim
of allowing students to easily gain insight into the different
planning algorithms. From the research perspective, that we
focus on motion planning strategies for hand-arm robotic
systems, we required a tool to easily configure the coupling
between degrees of freedom and the inclusion of dynamic
simulation.

The OMPL library has been chosen as the planning core
for Kautham because of its quality and the great amount
of planners provided (that allow planning under geometric
constraints as well as under differential constraints), including
those requiring dynamic simulations. Not any other alternative
could compete at this level. Although OMPL has a graphical
application (OMPLapp), we have discarded it because it is
currently restrained to motion planning problems involving
static environments and free-flying rigid bodies in 2D and 3D.
OMPL is also used in MoveIt!, but this option has not been
considered because we desired an application not tied to any
middleware like ROS. Besides, these two applications neither
allow the visualization of the configuration space.

The paper is structured as follows. Section II briefly reviews
the software tools used for the development, then the basic
and advanced features are described in Sections III and IV,
respectively. Finally, Section V describes its use in teaching
and research at the IOC-UPC and Section VI concludes the
work.

II. TOOLS

The Kautham Project has been developed in C++ with
the open-source and cross-platform directives in mind [8].
This section lists the software tools used without dis-
cussing their choice (in some cases alternative tools could



Fig. 1: XML problem description file that includes information
of: the robot, the obstacle, the controls and the planner.

have been selected as design options). They are the fol-
lowing: Qt (qt-project.org) is used for the user interface,
Coin3D (www.coin3d.org) for the graphical rendering, PQP
(gamma.cs.unc.edu/SSV) for the collision detection and ODE
(www.ode.org) for the rigid body dynamic simulation. In-
put files describing the problem use the XML format
(www.w3.org/XML) and the geometry of the robot and the
scene is described in VRML format (web3d.org). The software
uses the CMake build system (www.cmake.org) and is under
the Git distributed revision control (git-scm.com). It can be
downloaded and installed from sir.upc.edu/kautham.

III. BASIC FEATURES

A. Problem description

Problems are defined using input XML files with four basic
main sections (Fig. 1): robot(s), obstacle(s), controls and plan-
ner. The main information provided for each robot/obstacle
is: a) the path to a robot/obstacle description file; b) the
translational limits of motion if the robot/obstacle has a mobile
base; c) the home location with respect to the world reference
frame. The information for controls is optional and it consists
of: a) the path of a file that describes which degrees of freedom
(d.o.f.) of the robot(s) are going to be actuated and how (if
not provided all d.o.f. are actuated and a control per d.o.f. is
created); b) the path of a file with the same information for
obstacle(s) (if not provided they are considered fixed and no
controls are created). Finally, the main information provided
for the planner is: a) the query to be solved (initial and
goal configurations of the robot(s) and initial configuration
of mobile obstacles, if any); b) the parameters of the planner.

B. Modelling robots and obstacles

Any robot will be considered, in a general way, as a tree-
like kinematic structure with an optional mobile base, i.e. the
configuration space will be C = Cb × Cθ, with Cb being SE3
or null, and Cθ = Rn, being n the number of joints of the
kinematic structure (n = 0 for free-flying robots).

Fig. 2: Part of the URDF file that describes the Allegro Hand.

Fig. 3: Part of the XML file that describes a KUKA LWR
robot using the modified DH parameters.

The kinematic structure will be defined using ei-
ther the Universal Robotic Description Language (URDF,
http://wiki.ros.org/urdf), or the Denavit-Hartenberg (DH) pa-
rameters (either standard or modified) coded in an XML
file (Fig. 2 and 3). These files include the visualization
models of the links as the path to a VRML file describing
the geometry (in the case of URDF, the link geometry can
also be defined using primitives like boxes, cylinders and
spheres, or as the union of different geometries when mul-
tiple instances are provided). Also, collision models can be
optionally provided in a similar way. When this is not the
case, the user can choose between using the same visualization
model for collision-checking (the default mode) or an ori-
ented bounding box that is computed using the gdiam library
(sarielhp.org/p/00/diameter/diam prog.html). Boxes are stored
as VRML files, not to repeat the computation if later required.

If needed, inverse kinematics should be coded for any new
robot to be used (currently, the inverse kinematic for the
Stäubli TX-90 and the Universal Robots UR5 robots and for
the Schunk SAH mechanical hand are available). The inverse
kinematics to be used is specified in the file that describes the
kinematic structure of the robot.

Obstacles are described using the robot data structure. For
the simple case of static obstacles, they are defined with none
of the degrees of freedom being actuated. For mobile obstacles



Fig. 4: Table of parameters for an RRTConnect planner (it
includes the Range and other parameters general to all the
planners).

Fig. 5: Code to add the parameters for a PRM planner
contained in the creator of the PRM planner class.

they can range from simple free-flying bodies (i.e. robots with
a single link and a mobile base) to complete robots. In this
case a file with the controls that move the d.o.f. is provided,
and their initial configuration is set in the query section of the
problem description file. The configuration of mobile obstacles
is controlled externally (a class called kauthamshell has been
implemented to provide access from external applications and
that can be connected, for example, to a ROS communication
node).

C. Planners

Different planners are provided by The Kautham Project:

• Potential field-based planners: two planners are provided,
one based on the navigation function NF1 [9] and the
other one based on harmonic functions [10]. Although
coded for n dimensions, these planners work correctly
for n ≤ 3 since they are based on a grid decomposition
of the configuration space.

• Sampling-based planners: Many geometric planners from
OMPL [6] are available (PRM [11], RRT [12], RRT-
Connect [13], RRT* [14], SBL [15], EST [16], and
KPIECE [17]) and any new OMPL planner can easily
be incorporated. The Kautham Project defines a class for
each planner that derives from a general abstract class
that is responsible for generating the OMPL StateSpace
from the description of the problem. This is done using
the OMPL CompoundStateSpace class (the state space
of a robot with configuration space SE3 × Rn is the
composition of an OMPL SE3StateSpace and an OMPL
RealVectorStateSpace; and the complete state space of
the multi-robot problem is the composition of the state
space of each robot).

The following two features are of interest:

Fig. 6: XML file describing the controls for a free-flying robot
with two d.o.f. of translation.

Fig. 7: XML file describing the controls for a KUKA robot
with a fixed base.

a) The GUI is easily adaptable to new planners: Planner
parameters are shown in the graphical user interface (GUI) as
a table of names-values (Fig.4), and functions are provided to
easily set or delete the parameters to be shown to the user
(Fig.5), thus different planners can be interfaced without the
need to change the GUI.

b) Controls: By default, one control is created per each joint
defined as moveable, plus six for the mobile base (three for
translations and three for orientations using the parameteriza-
tion of quaternions detailed in [18]), provided that the problem
definition file includes the translational limits of motion thus
indicating that the base is mobile. This mode can be overridden
by defining an XML file with the controls to be used, as shown



Fig. 8: Visualization and collision model tabs.

Fig. 9: Visualization of the configuration space of: a 2D maze
problem solved with an RRT (top), a 2D narrow passage
problem solved with a PRM (middle) and another one solved
with harmonic functions (bottom).

in Fig. 6 for a free-flying robot with two translational d.o.f.
and Fig. 7 for an industrial robot with a fixed base. Coupling
between d.o.f. can also be defined as detailed in Section IV-A.
All the controls are configured to take values in the range [0, 1],
and the sampling is done in this control space, which is an
unitary hypercube. Alternatively, when there is a single control
per degree of freedom, the OMPL samplers can also be used.

D. Visualization

The GUI shows the workspace, where the solution path is
animated, in two tabs, one with the visualization models and

Fig. 10: Visualization of the configuration space of: a nar-
row passage in SE3 solved with a RRTConnect (the projec-
tion of the 6-dimensional configuration space onto the three
transaltional d.o.f. is shown), and a multirobot problem solved
with a RRT∗ (the projection of the 8-dimensional configuration
space onto the two translational d.o.f. of the blue robot is
shown).

Fig. 11: Graphical User Interface.

the other with the ones used for collision checking (Fig. 8).
For 2- or 3-dimensional configuration spaces, the roadmaps,
trees or potential landscapes and the solution path are shown
by the GUI in a separate tab (Fig. 9). For higher dimensional
configuration spaces the software makes use of the OMPL
projection class to show, in separate tabs, the projections of
the configuration space onto the first two or three degrees of
freedom of each robot (Fig. 10).

The GUI also allows to (Fig. 11): a) interactively change
the control values to move the robots and the mobile obstacles
(and to visualize the values of all the d.o.f.); b) obtain samples
using different samplers; c) check if a sample is in collision
or not and compute the distance to the obstacles; d) test if the



local planner can connect two samples; e) define the planner
parameters and solve a query; f) set/unset the computation of
bounding boxes and configure some visualization features.

IV. ADVANCED FEATURES

A. Coupling between degrees of freedom

The configuration space of a problem with m robots is the
composition of the m configuration spaces Ci:

C = C1 × · · · × Ci × · · · × Cm, (1)

where in the general case Ci = SE3×Rni . Configurations in C
will be represented by vectors of dimension d =

∑m
i=1(6+ni),

with each component normalized in the range [0, 1], i.e.:

q̂ = (q̂1, . . . , q̂d)
T with q̂i =

qi − qmin
i

qmax
i − qmin

i

(2)

The d degrees of freedom of the robotic system can be
actuated either separately or in a coupled way. To model this,
the following expression is used to determine a configuration q̂
using a vector of p controls, (c1, . . . , cp)

T , a d × p mapping
matrix, K, and a vector of offsets, (o1, . . . , od)

T :q̂1...
q̂d

 = K

c1 − 0.5
...

cp − 0.5

+

o1...
od

 (3)

Controls and offsets take values in the range [0, 1], and the
values q̂i are forced to lie also in this range, i.e. whenever the
ith row of the right-hand side of Eq. (3) is greater than 1 then
q̂i = 1 and whenever it is below 0 then q̂i = 0.

The mapping matrix defines how the degrees of freedom
are actuated. An identity mapping matrix indicates that all the
degrees of freedom are independently actuated. A mapping
matrix with some zero rows indicates that some degrees of
freedom are not actuated, i.e. fixed. A mapping matrix with
columns with several non-zero elements indicates that some
degrees of freedom (that may be from the same robot or
from different robots) are coupled. For instance, the joints of
a mechanical hand can be coupled to mimic the synergies
that there exist in the human hand motions [19]. This is
illustrated in Fig. 12 that shows a portion of an XML file
describing a column of the mapping matrix (the column is
built by multiplying the eigenValue shown in the first line by
the unitary vector whose components are the values of each
d.o.f.). It can be seen that the control called handPMD C1
simultaneously moves all the degrees of freedom of the fingers
of the mechanical hand SAH, as shown in the snapshots of
Fig 13.

Because, as stated in Section III-C, sampling is done in the
control space, the dimension of the problem can be reduced
when coupling between degrees of freedom is defined. For
instance, in the case of the mechanical hand that mimics the
human hand, the consideration of up to five controls is enough
to cover a high percentage of motions. Then, the planning of
the motions of a 19 d.o.f. hand-arm robotic system composed
of a 6 d.o.f. industrial robot and a 13 d.o.f. mechanical hand as

Fig. 12: Description of a control that moves all the 13 d.o.f.
of the SAH mechanical hand in a coupled way.

Fig. 13: Snapshots of the motion of the mechanical hand SAH
when control handPMD C1 is actuated.

that considered in [19], can be performed in a 11-dimensional
control space.

B. Constrained motion planning

Besides the geometric planners, OMPL also includes a set
of planners to plan under motion constraints. The Kautham
Project defines a class for each planner and type of robot
that includes the kinematic constrained model and the bounds
of the valid controls. All this classes derive from a parent
class that contain the state space of the robotic system,
instantiated as before from the description of the problem,
and procedures to compute the changes of the system state
when controls are applied. This procedures are encapsulated
in a class derived from the OMPL StatePropagator class and
contain an instance of a template class that performs an Euler
integration using a generic kinematic model of the robot that is
later particularized. Any of the planers included in the OMPL
control namespace can be used within The Kautham Project,
although only the RRT has been currently incorporated. As
an example Fig. 14 shows a path planning problem of a non-
holonomic robot moving through a narrow passage solved with
this planner.

C. Dynamic simulation

Dynamic simulation plays a significant role in robotics
and is essential in order to achieve a more realistic behavior
when there is physical interaction, like when performing
grasping operations. Various physics engines are available for
the simulation of rigid body dynamics such as Bullet (bullet-
physics.org), PhysX (physxinfo.com) or ODE (www.ode.org).



Fig. 14: Workspace and configuration space of a narrow
passage problem with a non-holonomic mobile robot.

Even though many physics engines are used for animations and
gaming purposes [20], ODE is at the core of many dynamic
simulators for robotics, like Gazebo (gazebosim.org) or We-
bots (www.cyberbotics.com), for being efficient and stable [21].
Furthermore, the OMPL library has a state space, called
OpenDE state space, designed to represent the configuration
space of the dynamic environment modeled with ODE. Due
to these reasons, ODE is used in The Kautham Project for
dynamic simulation.

In order to consider dynamic simulation within Kautham,
the dynamic information of robots/obstacles must be intro-
duced using the URDF descriptions and a planner from the
OMPL control-based suite of planners must be defined in the
problem input file. Then, the dynamic environment is created
by defining an ODE body for each robot/obstacle link and then
generating the OMPL OpenDE state space corresponding to
the set of resulting bodies (each body state has 12 dimensions,
3 for position, 3 for orientation, 3 for linear velocity and 3
for angular velocity). Planning parameters like world step size
are defined in the planer section of the XML input file. The
controls computed by the OMPL control-based planners are
applied as forces/torques to the bodies. The goal is defined as
a goal region and a distance to this goal is defined and used
by the planners. When a path is obtained, it can be visualized
by the GUI.

D. Integration with task planning

Task planning is the problem of finding the discrete and
finite sequence of actions a robot needs to perform to achieve
a goal, while motion planning copes with the computation of
the motions to fulfill such actions. Task planning and motion
planning need to be hierarchically coupled and simultaneously
solved in order to make robots able to solve complex tasks in
dynamic and semi-structured human environments.

To integrate task and motion planning, the ROS middleware
is used. At the planning level, The Kautham Project has been
encapsulated as a ROS service. At the task planning level, the
Cognitive Robot Abstract Machine (CRAM, [22]), behaves as
a ROS client. CRAM is provided as two ROS packages: the
cram language package and the cram reasoning package. The
cram language defines the CRAM planning language (CPL)
that contains extensions to the Common Lisp (CL) language

Fig. 15: XML file describing a benchmarking.

especially designed for writing transparent robot control pro-
grams (CL eases the artificial intelligence planning and the
interactive interface with the operator). The cram reasoning
package contains a full-featured Prolog interpreter written in
CL that provides lightweight reasoning mechanisms to infer
control decisions.

Therefore, with this framework, The Kautham Project plan-
ning environment can be flexibly configured (planner type,
planner parameters, query to be solved,...) from a task level
perspective and used when required, and the answers provided
can be used as inputs for further task reasoning.

E. Benchmarking

A console application, called Kautham Console, is provided
to run in batch mode and execute different benchmarkings,
making use of the OMPL benchmarking utility. It facilitates
solving a motion planning problem repeatedly with different
planners, different samplers, or even differently configured
versions of the same planning algorithm. It also allows the
user to run the same benchmarking but with different number
of repetitions or subject to different time and memory limits.

Kautham Console is configured by using an input file. This
file uses XML format and contains the benchmarkings to run
(Fig. 15). The information provided for each benchmarking
consists on a list of paths to the problem descriptions files
and the parameters to configure the benchmarking.

In every specified problem description file, a planner will
be defined. It is important to assure that robots, controls,
obstacles and the query to be solved are the same for all the
benchmarking’s files. Otherwise, the setup of the first problem
will be used for the benchmarking.

Some of the benchmarking parameters that can be set up
are the maximum amount of time and memory a planner is
allowed to spend in planning, the number of times to run
each planner, whether progress is to be displayed or not, a
name for the experiment and a file path where results will be
saved. Nevertheless, code provides default values for all the
parameters.

Once the code has been executed, a log file for every bench-
marking is generated. These files contain information about the
settings of the planners, the parameters of the problem tested
on, etc. To visualize this information, the user can make use
of OMPL scripts to parse the log files and generate a series of
plots showing the results for each planner (Fig. 16). A dump
file, that can be loaded in a MySQL database, can also be
generated to process the data in alternative ways.



Fig. 16: Example of the benchmarking output: plot comparing
the execution times (in seconds).

V. USING KAUTHAM

A. Teaching

The Kautham Project is being used with success for the
practicals of the course “Planning and Implementation of
Robotic Systems” of the Master in Automatic Control and
Robotics taught at the Universitat Politècnica de Catalunya.
The course is mainly devoted to describing motion planning
approaches, both the classic ones (based on potential fields,
roadmaps or cell decompositions) and those based on sam-
pling. The practicals have been designed to illustrate the basic
potential field planners and the basic RRT and PRM sampling-
based planners, evaluate their parameters and understand the
resolution/probabilistic completeness of these planners:

• Potential field methods: Students must apply the NF1
navigation function and the Harmonic Function planner
to different 2D scenarios and, in the later case, observe
the potential landscape for different iteration values and
different boundary conditions.

• RRT: Students must analyze the effect of the goal bias
and of the advance step, applying the RRT to different
2D scenarios (a maze, a cluttered workspace and a narrow
passage).

• PRM: Students must analyze the effect of the distance
threshold, applying the PRM to the same 2D scenarios,
and evaluate the utility of the expansion phase for narrow
passages (a variant of the PRM provided by the OMPL
library has been coded that permits to vary the amount
of time devoted to each of the expansion and growing
phases).

Optionally, final work projects are proposed that consists in
reviewing some of the more recent and advanced planners
offered by OMPL, like KPIECE or RRT∗, comparing different
planning algorithms using the benchmarking option, or ana-
lyzing the basic planers for problems with a high number of
degrees of freedom. With these practicals students get a deep
insight of the basic planners and get aware of the effect of
their parameters.

Fig. 17: Samples of complex planning problems managed with
The Kautham Project: cooperation in an industrial robotic cell
with a fixed and a mobile manipulator, coordination of a two-
arm torso, motion of a bronchoscope modelled as a robot with
kinematics constrains and grasping in cluttered environments.

Starting to work with Kautham is quite easy because many
problem examples are provided ready to be run, as well as
many robots and obstacles that can be used to define new
scenarios.

B. Research

The Kautham Project has been used for the development
of many planners related to the motion of hand-arm robotic
systems, like those reported in [19][23][24][25], that reproduce
in the mechanical hand the coupling between the motion of
the fingers of the human hand. In a different scope, it has
been used within a virtual bronchoscopy system for the motion
planning of a bronchoscope (with kinematic constraints) from
the trachea to a peripheral lung lesion [26].

Fig. 17 illustrates several problems solved with The Kau-
tham Project, that shows that it has been used to design
planners to solve difficult motion planning problems. Also,
in some of the problems set, the solutions found have been
run in real environments with successful performance.

The current research is focused in taking into account the
coupling between degrees of freedom of the two arms of
a robotic torso, the consideration of dynamic simulation to



obtain robust grasps, and the integration with task planning to
allow the performance of tasks in human environments.

VI. CONCLUSIONS

This paper has presented a software package for the teaching
and the research of robot motion planning. The package allows
to cope with problems with one or more robots, which may
range from simple free-flying robots to mobile manipulators
equipped with mechanical hands. Based on the OMPL suite of
planners, The Kautham Project offers some advanced features
like the easy parametrization of planners, an easy way to
define coupled degrees of freedom and tailor the planning
accordingly, the dynamic simulation, the integration with task
planners or the benchmarking. The software is an open source
project and is available at sir.upc.edu/kautham.

REFERENCES

[1] M. Quigley, B. Gekey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source robot operating system,”
Workshop on Open Source Robotics. IEEE Int. Conf. on Robotics and
Automation, May 2009.

[2] H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time motion
control core of the Orocos project,” in IEEE Int. Conf. on Robotics and
Automation, 2003, pp. 2766–2771.

[3] B. León, S. Ulbrich, R. Diankov, G. Puche, M. Przybylski, A. Morales,
T. Asfour, S. Moisio, J. Bohg, J. Kuffner, and R. Dillmann, “Open-
GRASP: A toolkit for robot grasping simulation,” in Simulation, Mod-
eling, and Programming for Autonomous Robots, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2010, vol. 6472, pp.
109–120.

[4] M. Freese, S. Singh, F. Ozaki, and N. Matsuhira, “Virtual robot
experimentation platform V-REP: A versatile 3D robot simulator,” in
Simulation, Modeling, and Programming for Autonomous Robots, ser.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2010,
vol. 6472, pp. 51–62.

[5] I. A. Suçan and S. Chitta, “MoveIt!” http://moveit.ros.org.
[6] I. A. Suçan, M. Moll, and L. E. Kavraki, “The Open Motion Planning

Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012.

[7] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an
open-source multi-robot simulator,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2004, pp. 2149–2154.

[8] A. Pérez and J. Rosell, “A Roadmap to Robot Motion Planning Soft-
ware Development,” Computer Applications in Engineering Education,
vol. 18, no. 4, pp. 651–660, 2010.

[9] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential
field techniques for robot path planning,” in Advanced Robotics, 1991.
’Robots in Unstructured Environments’, Fifth International Conference
on, June 1991, pp. 1012–1017 vol.2.

[10] C. I. Connolly and R. A. Grupen, “The use of harmonic functions in
robotics,” Journal of Robotic Systems, vol. 10, no. 7, pp. 931–946, 1993.

[11] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. K. Overmars, “Proba-
bilistic roadmaps for path planning in high - dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, August 1996.

[12] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” TR 98-11, Computer Science Dept., Iowa State University,
October 1998.

[13] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” in Proc. of the IEEE Int. Conf. on Robotics
and Automation, 2000, pp. 995–1001.

[14] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, June 2011.

[15] G. Sanchez and J.-C. Latombe, “A single-query bi-directional proba-
bilistic roadmap planner with lazy collision checking,” in Int. Symp.
Robotics Research, 2001, pp. 403–417.

[16] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” in Robotics and Automation, 1997. Proceedings.,
1997 IEEE International Conference on, vol. 3, Apr 1997, pp. 2719–
2726 vol.3.

[17] I. Suçan and L. Kavraki, “A sampling-based tree planner for systems
with complex dynamics,” Robotics, IEEE Transactions on, vol. 28, no. 1,
pp. 116–131, Feb 2012.

[18] J. J. Kuffner, “Effective sampling and distance metrics for 3D rigid body
path planning,” in Proc. IEEE Int. Conf. Robotics and Automation, vol. 4,
2004, pp. 3993–3998.

[19] J. Rosell, R. Suárez, C. Rosales, J. A. Garcı́a, and A. Pérez, “Motion
planning for high dof anthropomorphic hands,” in Proc. IEEE Int. Conf.
Robotics and Automation, 2009, pp. 4025–4030.

[20] T. Y. Yeh, G. Reinman, S. J. Patel, and P. Faloutsos, “Fool me twice:
Exploring and exploiting error tolerance in physics-based animation,”
ACM Trans. Graph., vol. 29, no. 1, pp. 5:1–5:11, Dec. 2009.

[21] E. Drumwright, J. Hsu, N. Koenig, and D. Shell, “Extending open
dynamics engine for robotics simulation,” in Simulation, Modeling, and
Programming for Autonomous Robots, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2010, vol. 6472, pp. 38–50.

[22] M. Beetz, D. Jain, L. Mösenlechner, and M. Tenorth, “Towards Per-
forming Everyday Manipulation Activities,” Robotics and Autonomous
Systems, vol. 58, no. 9, pp. 1085–1095, 2010.

[23] R. Suárez, J. Rosell, A. Pérez, , and C. Rosales, “Efficient search of
obstacle-free paths for anthropomorphic hands,” in Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and System, 2009, pp. 1773–1778.

[24] J. Rosell, R. Suárez, C. Rosales, and A. Pérez, “Autonomous motion
planning of a hand-arm robotic system based on captured human-like
hand postures,” Autonomous Robots, vol. 31, no. 1, pp. 87–102, 2011.

[25] J. Rosell, R. Suárez, and A. Pérez, “Path planning for grasping op-
erations using an adaptive PCA-based sampling method,” Autonomous
Robots, vol. 35, no. 1, pp. 27–36, 2013.

[26] J. Rosell, A. Pérez, P. Cabras, and A. Rosell, “Motion planning for the
virtual bronchoscopy,” in IEEE Int. Conf. on Robotics and Automation,
2012, pp. 2932–2937.


