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Abstract— The use of anthropomorphic mechanical hands
allows the execution of complex manipulation tasks and, there-
fore, its use is increasing, both in humanoid robots and mobile
manipulators. The planning of the motions of these hands is
not easy due to the high number of degrees of freedom (DOF)
involved. Even when they may be mechanically independent,
these degrees of freedom can be artificially coupled in order
to mimic the human hand motions by using synergies, which
in its turn results in a lower subspace where to perform the
motion planning, as previously done by the authors using a
PRM. This paper extends this idea by using an RRT*, that
differently from other sampling-based planners, is an asymp-
totically optimal method. The optimization function selected
evaluates the alignment of the path to the directions defined by
the synergies, thus favoring human-like motions. The proposal
is conceptually illustrated with a simple 2 DOF planar robot
and applied to a 13 DOF mechanical hand.

I. INTRODUCTION

The planning of motions for robotic systems with a high
number of degrees of freedom (DOF), like those involving
mechanical hands, is a challenge that can be tackled us-
ing sampling-based approaches like Probabilistic RoadMaps
(PRM [1]) or Rapidly-exploring Random Trees (RRT [2]).
These planners provide probabilistic completeness and work
well in practice, and, moreover, several variants have been
proposed in order to improve their performance in difficult
problems, for instance, some of them use different impor-
tance sampling methods for PRMs to obtain samples in
difficult regions of the configuration space like narrow pas-
sages [3], [4], while others propose techniques for RRTs to
project samples onto the manifolds that contain the solutions
to problems involving task manipulation constraints [5], [6].
All these algorithms, however, return non-optimal solutions.
To settle this problem, new algorithms called PRM∗ and
RRT∗ have been proposed, returning solutions that converge
almost surely to the optimum [7].

The basic idea of RRTs is to build a tree of feasible
motions, rooted at the initial configuration, by iteratively
sampling a random configuration (qrand), searching the node
of the tree nearest to it (qnear), and growing an small
amount from qnear, in the direction of qrand, towards a new
configuration qnew. If the path connecting qnear and qnew is
collision-free then it is added as an edge of the tree. In
the RRT∗ algorithm, once qnew has been computed as in the
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RRT case, it is not directly connected to qnear but to the node
(among a given set of neighbors) that minimizes the cost
to reach qnew. Then, RRT∗ checks whether each neighbor
node can be reached, through qnew, with a cost smaller than
its current one and, if so, rewires the edges of the tree.
Thanks to this rewiring process the solution keeps improving
while the number of samples increases. For high-dimensional
configuration spaces, however, RRT∗ may have a slow cost
improvement due to the the heavy exploration nature of
RRTs that makes it difficult for nodes of an already found
solution path to be selected for the expansion and (possibly)
rewired. To mitigate this effect some sampling biases have
been proposed, like a Voronoi bias in the task space [8], a
local bias around the solution path [9], or a bias based on
projections learned during the planning process [10].

Regarding the problems related to mechanical hands, for
those that are anthropomorphic, the use of Principal Compo-
nent Analysis (PCA) has been widely used in order to mimic
the human hand, because PCA applied to a set of samples of
human hand configurations allows to capture the couplings
that there exist in the human hand between the finger joints.
When these couplings, called synergies, are mapped to the
mechanical hand, human-like postures can be obtained. This
approach has been used in the grasp synthesis problem [11],
[12], in manipulation [13], in teleoperation [14], and in
motion planning [15], where synergies were called Principal
Motion Directions or PMDs (in this work either synergies
or PMDs will be used indistinctively). In motion planning,
besides the obtention of human-like motions, the use of PCA
is useful to improve the planning performance due to the
reduction of DOF obtained if only few synergies with a
high accumulated variance are used. PCA has further been
exploited as an importance sampling method either using
PRMs or RRTs [16], [17].

This paper proposes the use of an RRT∗ and the use of
hand synergies to obtain human-like motions in an optimal
way. Since the first PMDs or synergies capture the main cou-
plings of the hand, the proposal is to define an optimization
function, to be used with the RRT∗ algorithm, that makes
the tree edges to be as much aligned as possible with the
vectors describing these synergies. That is, the more aligned
to these synergies an edge is the lower its cost, and since
the RRT∗ returns a solution that converges almost surely
to the optimum, then the solution is optimal in the sense
of human-likeness (considering as human-like movements
those movements that follow the human synergies). A related
approach was explored in [18], where an RRT∗ called
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Fig. 1. Top-left: Positive correlation between proximal phalanxes;
Top-right: Negative correlation between the index and the ring abduc-
tions/adductions; Bottom-left: No correlation between the thumb base and
the medium phalanx of the index; Bottom-right: Total variance covered as
a function of the number of PMDs used. Reproduced from [15].

coupled-RRT∗, or cRRT∗, was used to plan motions for
a team of mobile robots in such a way that they moved
like a flock of birds. This was achieved using the directions
that determine the coupling between the translational DOF
of each robot and an optimization function that forced the
solution to be as much aligned as possible with them.

After this introduction, the paper is structured as follows.
Section II explains how the hand synergies are obtained,
Section III describes the proposed optimization function,
and Section IV the planning procedure that is illustrated in
Section V with two examples. Finally, SectionVI summarizes
and discusses the proposal.

II. HAND SYNERGIES

The mapping of human hand synergies to the robotic hand
can be done in different ways (see [19] for a good discussion
on the topic). In our work, in order to plan human-like
motions for a mechanical hand, the human hand synergies
are transferred to the mechanical hand with the following
procedure. First, using a sensorized glove (Cyberglove) the
data from the joints of the human hand are captured while
the operator is moving freely the fingers (i.e. without impos-
ing actions related to grasping or manipulation of objects,
which is a key difference with most previous works), and
mapped to the mechanical hand Schunk SAH [20] using
a joint-to-joint mapping. Then, the Principal Component
Analysis is performed to the mapped data and the resulting
eigenvectors and eigenvalues define the hand synergies. A
detailed description of this process is reported in [15]. Fig. 1,
reproduced from [15], illustrates the coupling between some
finger joints and the accumulated variance illustrating that
the use of few PMDs is enough to describe a wide range of
human hand postures. Fig. 2 shows some snapshots of the
motion along the first PMD.

III. PROPOSED OPTIMIZATION COST FUNCTION

Optimization-based planners, like RRT∗, use an optimiza-
tion cost function to evaluate and compare different paths. In
RRTs, the initial and the goal configurations are connected by

Fig. 2. Configurations of the SAH hand when it is moved along the first
PMD (i.e. with only one DOF). Reproduced from [21].

piece-wise paths composed of a set of edges, called motions.
When the only constraints are geometric, like in the case of
mechanical hands, the paths can be piece-wise linear and
the motions straight-line segments. In its simplest version
the cost of a motion is equal to its length (which has to be
minimized) or to the clearance (which has to be maximized),
although other alternatives have also been proposed. Here the
optimization function to evaluate the cost Ce of a motion e
connecting two configurations is defined as a weighted sum
of three components, i.e.:

Ce = wdcd + wzcz + whch, (1)

where wd, wh, wz ∈ R+ are weighting coefficients (that are
currently fixed in an empirical way) and cd, ch, and cz are
the three components that evaluate, respectively:

• The traveled distance: cd measures the length of the
edge e, with the aim of obtaining paths as short as
possible. It is computed as the Euclidean distance in
the configuration space C:

cd = |e| (2)

• The zigzag: cz measures how much a motion e is
aligned with the previous one, called the parent mo-
tion ep, with the aim of minimizing the zigzag of the
path. cz evaluates the alignment using the angle between
the two consecutive edges ep and e, represented as êep,
and multiplying it by the advance step ε used in the
growing of the tree in order not to have too dissimilar
magnitudes of the components of the cost Ce:

cz = ε êep (3)

For motions along edges starting at the initial config-
uration, cz is set to zero since in this case there is no
parent edge.

• The human-likeness: ch measures how much the edge e
is aligned with the directions in C that describe the
synergies, with the aim of obtaining paths with human
appearance. Let:

– C be the d-dimensional configuration space of the
mechanical hand.

– uj ∈ C, with j = 1, . . . , d, be the unitary vectors
defining the PMDs (i.e. the eigenvectors resulting
from the PCA) and λ1, . . . , λd the corresponding
eigenvalues (λi > λi+1∀i = 1, . . . , d− 1).

– n < d be the number of PMDs to be used. n
is selected such that the first n PMDs make the
accumulated variance be above a given predefined



threshold. These PMDs represent the main cou-
plings between the DOF of the finger joints.

– ePMD be the weighted projection of e onto the
subspace defined by the first n PMDs:

ePMD =

n∑
j=1

λj

λ1
(uT

j · eT )uj , (4)

Note that |ePMD| ≤ |e| is always true.
Now, the cost ch measures the alignment of e with
respect to the vectors u1, · · · ,un using the factor
|e|/|ePMD|. The minimum value of this factor is 1 and
occurs when e is aligned with the first PMD. The more
aligned with the main coupling directions an edge e is,
the smaller its cost:

ch = |e|min

( |e|
|ePMD| , C

max
c

)
(5)

where Cmax
c is a predefined saturation value that avoids

useless large values of ch when |ePMD| → 0, and the
multiplying factor |e| has been added to take into
account the prolongation of this alignment/disalignment.

The objective is the minimization of the total cost C of a
path defined in the RRT∗ by a sequence of motions ei:

C =
∑

ei∈Path

Cei (6)

IV. PLANNING PROCEDURE

A. Sampling bias and node rejection

As mentioned in the introduction, the RRT∗ algorithm
may have a slow cost improvement for problems with a
high number of degrees of freedom. To mitigate this effect,
sampling can be biased around the path in order to keep
improving the first found solution while exploring the whole
workspace to find the optimal one [9]. This proposal straight-
ens and shortens the path by randomly choosing a node of
the solution path and steering it a given amount towards the
midpoint between the previous and the next nodes. A similar
idea was proposed by the RRT∗-Smart algorithm [22]. In this
approach, once the first solution is found, a path optimization
is run connecting the nodes of the path that are visible to
each other, and the nodes of this optimized path are beacons
where to oversample around. Also, in order to improve
performance, the tree can be kept as reduced as possible by
rejecting those samples that may be useless in finding a better
solution, e.g. a sampled configuration qrand is rejected if the
distance from qini to qrand plus the distance from qrand to
qgoal is greater than the cost of the current path [9]. All these
proposals assume that the optimization parameter is the path
length. We extend these ideas to consider any optimization
function. Let consider the following functions:

• Nearest(V, q): Returns the closest node to configura-
tion q from the set V of nodes of the tree.

• Steer(q1, q2, ε): Returns a new configuration q obtained
by moving from q1 an small amount ε towards q2, or
the final configuration q2 if the distance between q1

and q2 is smaller than ε.

Algorithm 1 Sample
Input: Configuration qgoal

Path P
Probability α, β, γ
Radius rmax

Advance step ε
Node set V

Output: A sample to steer the RRT
if P = NULL then

if Rand(0, 1) < α then
qrand ← qgoal

end if
qrand ← SampleUniform(C)

else
if Rand(0, 1) < β then

n=RandPathNode(P )
qmid = (P (n− 1) + P (n+ 1))/2
qrand ← SampleUniform(qmid,Rand(0, rmax))

else
if Rand(0, 1) < γ then

while true do
qrand ← SampleUniform(C)
qnear ← Nearest(V, qrand)
qnew ← Steer(qnear, qrand, ε)
if Cost(qnear) + EdgeCost(qnear, qnew)+
EdgeCost(qnew, qgoal) < Cost(qgoal) then

break
end if

end while
else

qrand ← SampleUniform(C)
end if

end if
end if
return qrand

• EdgeCost(q1, q2): Evaluates the cost Ce of the edge e
that connects q1 and q2 using Eq. (1) .

• Cost(q): Returns the cost C from qinit to q using Eq. (6).
• Rand(v1, v2): A random value in the range [v1, v2].
• SampleUniform(C): Returns a random configuration

of C using a uniform sampling distribution.
• SampleUniform(q, r): Returns a random configuration

inside the ball of radius r centered at q using a uniform
sampling distribution.

• RandPathNode(P ): A random node of the path P .

Algorithm 1 shows the sampling procedure, where: a) while
a path is not found, it biases the search towards the goal
with a probability α, as usually done in RRT-like algorithms;
b) once the path is found, it biases the search around the
path with a probability β to locally optimize the solution;
c) configurations uniformly sampled from C are filtered, with
a probability γ, to discard those that are not promising in
finding a better solution, thus keeping the tree with a reduced
size.

B. The planning algorithm

The proposed planning procedure is described in Algo-
rithm 2, where the following functions are also used:

• k-Near(V, q): Returns the k nearest neighbors of q from



Algorithm 2 RRT∗ algorithm that uses the cost function
described in Section III and the sampling procedure of
Algorithm 1.
Input: Configurations qinit, qgoal

Probability Pgoal, Ppath, Pfilter
Radius rmax

Advance step ε
Output: A path from qinit to qgoal

V ← {qinit};E ← ∅;
for i = 0 to n do

qrand ← Sample(qgoal, Path(qgoal), Pgoal, Ppath, Pfilter,
rmax, ε, V )

qnear ← Nearest(V, qrand)
qnew ← Steer(qnear, qrand, ε)
if CollisionFree(qnear, qnew) then

Qnear ← k-Near(V, qnew)
V ← V ∪ {qnew}
qmin = qnear
cmin = Cost(qnear) + EdgeCost(qnearest, qnew)
for all q ∈ Qnear do

if CollisionFree(q, qnew) ∧
Cost(q) + EdgeCost(q, qnew) < cmin then

qmin ← q
cmin ← Cost(q) + EdgeCost(q, qnew)

end if
end for
E ← E ∪ {qmin, qnew} //Connect along a minimum-cost path
for all q ∈ Qnear do

if collisionFree(qnew, q) ∧
Cost(qnew) + EdgeCost(qnew, q) < Cost(q) then

E ← (E\{Parent(q), q}) ∪ {qnew, q} //Rewire
end if

end for
if qnew = qgoal then

return Path(qgoal)
end if

end if
end for
return ∅

the set V of nodes of the tree (the value of k depends
on the dimension of the configuration space and on the
number of vertices of the tree, as detailed in [7]).

• Path(q): Returns a piece-wise rectilinear path, com-
posed of edges of the tree, that connects the root node
qinit to node q. The path is computed by backtracking
from q following the parent relationship in the tree.

• CollisionFree(q1, q2): Returns true if the rectilinear
edge in C connecting q1 and q2 is collision-free, and
false otherwise.

It should be remarked that this RRT∗: a) uses Eq. (1) and (6)
for the cost function that allows to optimize distance, zigzag
and human-likeness, and b) uses Algorithm 1 to obtain
samples in an efficient way by biasing and filtering.

C. Implementation issues

The proposal has been implemented within The Kautham
Project [21], a motion planning and simulation environment
used at the Institute of Industrial and Control Engineering
(IOC-UPC) for teaching and research. The core of the
planners provided belong to the Open Motion Planning
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Fig. 3. Left: Motion of the 2 DOF planar robot along the first PMD that
defines a positive coupling between the two joint angles θ1 and θ2, i.e.
both joints move in the positive (counterclockwise) sense. Right: Motion
along the second PMD that defines a negative coupling, i.e. θ1 moves
counterclockwise while θ2 moves clockwise.

Library (OMPL) [23], which codes a wide set of the state-
of-the-art sampling-based motion planning algorithms at
an abstract level, i.e. without including issues related to
robot modelling, collision-check or visualization. The main
features of Kautham are the following: it allows to easily
and flexibly use and parameterize many planners, it allows
the visualization of 2D and 3D configuration spaces (and
of 2D or 3D projections of the higher dimensional ones),
it has an easy way to define coupled degrees of freedom
(described below) and tailor the planning accordingly, it
includes dynamic simulation, and it facilitates the integration
with task planners and the benchmarking of planners. The
cost function proposed has been coded as a class derived
from the OMPL OptimizationObjective class and the plan-
ning algorithm as a derived class from the OMPL RRT∗ class
in order to include the sampling bias and the filtering.

The coupling between the DOF of a robotic system is
defined as follows [21]. Let q̂ be a d-dimensional configu-
ration with the joint values set in the range [0, 1]. Then, the
following expression is used to determine q̂ using a vector
of p controls, (c1, . . . , cp)

T , a d× p mapping matrix K, and
a vector of offsets, (o1, . . . , od)

T :

q̂ =

⎡
⎢⎣
q̂1
...
q̂d

⎤
⎥⎦ = K

⎡
⎢⎣
c1 − 0.5

...
cp − 0.5

⎤
⎥⎦+

⎡
⎢⎣
o1
...
od

⎤
⎥⎦ (7)

Controls and offsets take values in the range [0, 1], and the
values q̂i are forced to lie also in this range, i.e. whenever
the i-th element of the right-hand side of Eq. (7) is greater
than 1 then q̂i = 1 and whenever it is below 0 then q̂i = 0.

The mapping matrix K defines how the degrees of free-
dom are actuated, e.g. an identity mapping matrix indicates
that all the degrees of freedom are independently actuated, a
mapping matrix with some zero rows indicates that some
degrees of freedom are not actuated (i.e. fixed), and a
mapping matrix with columns with several non-zero elements
indicates that some degrees of freedom are coupled, like in
the case of PMDs.

V. EXAMPLES

A. A simple 2-DOF example

Let consider a 2-DOF planar robot with two rotational
joints, and let define a coupling between them using the



Fig. 4. RRT (top) and RRT∗ (bottom) for different number of samples.

Fig. 5. RRT∗ optimizing the proposed cost: (top-left) plain solution; (top-
right) solution using only local bias; (bottom-left) solution using only node
filtering; (bottom-right) solution using local bias and node filtering.

following two PMDs:

u1 =
1√
2
[1, 1]T λ1 = 1.0 (8)

u2 =
1√
2
[1,−1]T λ2 = 0.1 (9)

i.e. the first PMD defines a positive coupling between joints,
as shown in Fig. 3 (left) and the second one a negative
coupling, as shown in Fig. 3 (right).

Fig. 4 shows the solutions found for a given query in
an environment with a single obstacle using the standard
RRT algorithm (top row) and the RRT∗ optimizing distance
(bottom row) with an increasing number of samples. Observe
that, as reported in [7], the RRT solution does not improve
with an increasing number of samples while RRT∗ does.

For the case of an obstacle-free environment, Fig. 5 shows

Bias

Bias + Filter

Co
st

Time (s)

Fig. 6. Cost decrease as a function of time (in seconds) resulting form the
average of 5 executions per planner.

a query that goes from the center of the configuration
space towards the top-left corner, i.e. the rectilinear motion
between the initial and the goal configurations is along the
second PMD that defines the least desired coupling direction.
Fig. 5 top-left shows the standard RRT∗ obtained using
the proposed cost function with wd = 0.1, wz = 1.0 and
wh = 1.0. It can be seen that the solution path (in red) has
a maximum projection along the first PMD. The other three
snapshots illustrate the use of the same optimization function
with: the path bias (Ppath = 0.8 and Pfilter = 0.0), the sample
filtering (Ppath = 0.0 and Pfilter = 1.0) and the consideration
of both bias and filtering (Ppath = 0.1 and Pfilter = 0.8). In all
cases Pgoal was set to 0.1. Fig. 6 shows how the cost keeps
decreasing as time goes by and illustrates that the exclusive
use of the path bias produces a local optimum with cost
around 10.7, and that the combined use of path bias and
sample filtering results in the fastest decrease of the cost.

The same problem as in Fig. 4 is illustrated in Fig. 7
with an RRT∗ optimizing distance (top) and optimizing the
proposed cost function (bottom), and without using bias nor
filtering (left figures) and with Ppath = 0.1 and Pfilter = 0.8
(right figures). It can be appreciated that in this latter case
the tree has grown towards regions relevant to the query.

B. A 13-DOF mechanical hand

The proposed planning procedure was used to plan the
motions of the Schunk SAH mechanical hand. This four-
finger hand has four joints and three DOF per finger (the
middle and distal phalanxes are mechanically coupled), and
the thumb base has one extra DOF, therefore the hand has a
total of 13 DOF. Fig. 8 shows snapshots of the motions of
the SAH hand between two given configurations, the initial
on the left and the goal on the right. Note that at these two
configurations the positions of the index and the ring fingers
are the same. The top row illustrates the solution found using
an RRT∗ optimizing the distance. The motions of the shortest
path found do not move at all the index nor the ring finger,
thus resulting in a short but not human-like solution. On the
other hand, the bottom row shows the solution found using



Fig. 7. RRT∗ optimizing distance (top): plain solution and solution using
path bias and node filtering; RRT∗ optimizing the proposed cost (bottom):
plain solution and solution using path bias and node filtering;

an RRT∗ optimizing the proposed cost function. Human-like
motions tend to couple positively the flexing of the index,
middle and ring fingers (it is difficult for a human to flex
one of them while keeping the others completely non-flexed).
This is noted in the snapshots in the bottom row where it
can be seen that: a) the index finger first flexes a little bit in
order to couple positively with the middle finger along the
last part of the motion; b) the ring finger is first extended with
a move positively coupled with the middle finger and then
flexes towards its final configuration. Therefore, it can be
seen that the proposed cost function quantitatively evaluates
the human-likeness of the mechanical hand motions and can
effectively be used in optimization-based planners.

VI. CONCLUSIONS

This paper has presented a motion planner for robotic
hands that tend to obtain human-like motions. The planner is
based on the RRT∗ algorithm with an optimization function
that measures and optimizes the alignment of the motions
with the directions defined by the main synergies of the
human hand. The proposal also includes some improvements
for the RRT∗ in order to work in the high dimensional
configuration space of the hand: a bias towards the path and
a node filtering technique. Future work is directed towards
the planning of human-like motions for a dual-arm robotic
system.
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