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Abstract— The paper deals with the problem of planning
movements of dual-arm anthropomorphic systems, with the
aim of reducing the computational cost of the problem and
making the movements look as human-like as possible. The
key idea of the proposal is the search of synergies of the dual-
arm anthropomorphic system in order to use them to reduce
the dimension of the search space while preserving human-like
appearance. This idea was already developed and successfully
used to plan movements of robotic hands, thus the extension to a
dual-arm system is attractive. The paper presents a description
of the proposed approach as well as real experimental results
that encourage doing further research in this line.

I. INTRODUCTION

Robot motion planning is a field whose importance grows
as the complexity of the robotic devices increases, being rel-
evant in different applications from industrial manipulation
to humanoid robotics [1]. In the case of humanoid robots, the
goal of motion planning is twofold. On the one side, it looks
for valid movements to solve a task dealing with a relatively
large number of degrees of freedom (DOF), and, on the other
hand, it tries to mimic the movements of human beings,
sometimes with kinematic structures that are not completely
equivalent.

Pursuing the first goal, different motion planners able to
deal with high number of DOF have been developed, being
the most frequently used the sampling-based planners like
Probabilistic Road Map planners (PRM) [2] or Rapidly-
exploring Random Trees planners (RRT) [3]. Several further
improvements on these approaches have been proposed like,
for instance, dealing with optimality [4] or constraints [5],
or biasing sampling towards more promising regions of the
configuration space using dynamic domains [6], workspace
information [7] or Principal Component Analysis [8]. Seek-
ing the second aim, the search for human-like movements is
done by looking for proper coordination between the robot
joint movements.

A typical example of this planning problem appears with
robotic hands, which are devices with many DOF (several
hands are available with four or five fingers with three or four
DOF per finger, e.g. Barrett Hand, Shadow Dextrous Hand,
SAH and SDH from Schunk, H2 Compliant Hand from Meka
Robotics, Gifu Hand from Dainichi Ltd., Azurra Hand from
Prensilia and Allegro Hand from SimLab).
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In this context, several works used the couplings between
the finger joints in order to reduce the planning complexity
as well as to look for human-like hand postures. The basic
idea is to establish a correlation between the DOF of the
robotic hand fingers equivalent to that existing in the human
hand. Relevant pioneering works dealt with the grasping
problem, analyzing the correlations of finger joints when the
hand was grasping an object and called them “hand postural
synergies” [9]. Other works used the same concept to find
pre-grasp hand configurations [10], and called “eigengrasp”
to each independent hand movement involving correlated
movements of all the joints. These works allow a reduction
of the grasp space up to a 2-dimensional space. The study
of hand synergies was also addressed recently for prototypes
of specific hands [11]. The same concept was used in other
works for telemanipulation purposes [12].

These works were oriented to grasp synthesis, others
applied the same concept to motion planning trying to mimic
human hand postures [13], in this case the correlations
between the finger joints are used to determine movement
directions so they were called “principal motion directions”
(PMDs). Motion planning requires the determination of the
correlation of the finger movements when they are freely
moved trying to cover the whole hand workspace without
any external constraint [14]. Other applications dealt with the
synthesis of human-like motions in graphic applications [15].
Dimensionality reduction techniques based on synergies have
also been used in the selection of grasping forces [16] as well
as embedded in the hand control system [17][18].

The comments above, regarding the use of synergies to
reduce the complexity of hand motion planning and to look
for hand movements that mimic the human movements, is
relevant here because the proposal in this work is the use of
similar concepts applied to the motion planning of a dual-
arm system with anthropomorphic features.

The number of anthropomorphic dual-arm systems avail-
able in the market has significantly grown in the last years,
either as a specific product (e.g. [19]) or as a composition
of manipulator arms assembled imitating a human structure
(e.g. [20]). These devices typically have 12 or 14 DOF, which
is a significant number when motion planning has to be done,
and becomes even more relevant when the dual-arm system
is part of a whole humanoid robot or when it is equipped
with hands as those mentioned above.

Even when all the arm DOF may be independently moved,
when a human being performs tasks with both arms in a
bounded workspace some synergies exist, and looking for
them is the first goal of this work. By bounded workspace
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Fig. 1.

we refer here to a space located in front of the body (talking
about a human being) with easy visual access. We are not
considering here that, for instance, the human operator has
to do something in the back of his body.

After this introduction Section II presents the problem
statement and gives an overview of the proposed approach;
Section III describes the experimental setup and the way
in which the dual-arm synergies are determined; Section IV
presents the motion planner used in this work, and Section V
illustrates the approach performance by showing experimen-
tal results. Finally, Section VI summarizes the approach and
indicates the future work.

II. PROBLEM STATEMENT AND APPROACH OVERVIEW

As stated above, the final problem to be solved is the
coordinated motion planning of a dual-arm system, and, for
this, the existence of synergies in the human dual-arm system
will be investigated. The proposed approach is conceptually
equivalent to that used regarding hand synergies. The main
steps can be summarized as follows (see Fig. 1):

1) The human operator performs different tasks using
both hands (see Fig. 2), and the wrist configurations
of both arms are sampled during the execution (i.e. the
position and orientation of both hands).

2) The inverse kinematics of the robotic dual-arm system
is computed for each pair of wrist configurations sam-
pled in Step 1. As a result, a set of joint configurations
of the dual-arm robotic system is obtained. Note that
this set could be obtained by sampling the human
arm joints and mapping them in some way to the
robotic system, but this could be not evident when the
kinematic structures are not clearly equivalent.

3) A Principal Component Analysis (PCA) [21] is run on
the set of configurations obtained in Step 2. A new
reference system of the dual-arm configuration space

Fig. 2. Human operator performing a task with both hands while wearing
the measurement equipment.

is obtained, with the axis ordered according to the
dispersion of the samples in a decreasing order.

4) A reduced number of components (those with highest
dispersion) is selected to obtain a subspace that, with
lower dimension, contains a high percentage of the
sample set (the percentage depends on the number of
selected components and therefore can be controlled).
Planning the arm movements in this configuration
subspace significantly reduces the complexity of the
problem while the human-like appearance is preserved
(within the limits allowed by the kinematics of the
mechanical system). Different strategies can be used
to exploit this subspace during the planning phase.

This general schema was originally applied to the motion
planning of robotic hands to simplify the search of grasping
configurations, as well as to plan free movements preserving
the human-like appearance (e.g. [13][22]). Nevertheless, its
application to an anthropomorphic dual arm systems has not
been reported yet and, therefore, the results of this work lead
to a generalization of the procedure to human-like dual arm
systems.

It must be noted that the dual-arm configuration informa-
tion can be processed in two possible ways. On one side,
the information about the joints of the human arms can be
captured and directly used for the PCA, in this way the real
synergies of the human arms are obtained and must then be
mapped in a non-trivial way to the robotic dual-arm system
(see an example in [23]). On the other side, the human arm
movements can be mapped first onto the robotic system, so
that when the human moves the arms the movements are
automatically mapped to the robotic system, and then the
PCA can be applied on the resulting values of the mechanical
joints. In this way the synergies are directly obtained for the
used robotic system in correspondence with the movements
done by the human operator. In this work the second option
is used.

III. DETERMINATION OF DUAL-ARM SYNERGIES

The sampling of human configurations and their mapping
to the robotic system is of vital importance in order to
correctly reproduce the human synergies in the dual-arm
robotic system. With this in mind, this section describes the
experimental setup, the motion capture procedure, the con-
figuration mapping, and the Principal Component Analysis.



A. Experimental setup

The experimental setup involves the following devices:

e A robotic dual-arm system (shown in Fig. 3a) composed
of two industrial robot arms UR5 from Universal Robots [24]
with 6 DOF each one, which are assembled emulating the
human arm configuration. Each robot is equipped with an
Allegro Hand from Simlab [25] that has 16 DOF.

e Two sensorized gloves CyberGlove (shown in Fig. 1
and worn by the operator in Fig. 2) were used to capture the
orientations of the hands of the human operator. Each glove
provides 22 joint-angle measurements: three flexion sensors
per finger, four abduction sensors between the fingers, a
palm-arch sensor and two sensors to measure the flexion and
abduction of the wrist. In the wristband there is a mounting
provision for a motion tracking sensor.

o Two magnetic wrist trackers Fastrak from Polhemus
with 6 DOF (shown in Fig. 1 and worn by the operator in
Fig. 2), were used to capture the position and orientation of
user wrists referenced to the global frame.

e A home-developed simulation tool, called The Kautham
Project [26], that includes tools for collision detection,
motion planning and graphical visualization of the whole
system.

B. Sampling and mapping dual-arm configurations

In order to capture information about the movements of
the operator arms, all the sensors are synchronized to take
samples at the same time with a rate of 50 Hz. Each sample
contains a translation vector and a rotation quaternion read
from each Fastrak tracker, 22 measurements describing the
positions of the finger joints and the hand orientation (flexion
and abduction) read from each glove, a sample identification
number, and information about the time when it was cap-
tured. Nevertheless, from the information provided by the
gloves only the values describing each hand orientation are
actually used in this work.

Once the samples from the human movements have been
taken, they are mapped to the robotic system in order to
obtain the corresponding configurations. This mapping is
done for each arm as follows. For i € {L, R}, let (see Fig. 3):

WTg, be the transformation from the world reference

frame (located between the two arm shoulders) to
the base of arm ¢,

B; Trcp, be the transformation from the base of arm ¢ to

its tool base (TCP),

WTr be the transformation from the world reference

frame to the Fastrak transmitter,

TTg, be the transformation from the Fastrak transmitter

to the i-th tracker sensor,

Si Trcp, be the transformation from the tracker sensor ¢

to the TCP of the arm .

Since the configuration of the robot TCP must follow the
configuration of the human wrist, the transformations from
the base to the human wrist and to the robot wrist must be
equivalent, i.e. it can be considered that

W BiTrep, =W Tr TTs, ¥ Trep, (1)

Fig. 3. Transformations related to: a) the robot arms, b) the gloves and
the trackers.

and solving for % Trop. results,
. -1 _
BTrep, = (WTp,) "Tr 'Ts, ¥Trcr, ()

Note that (WTBl.)f1 and WTp are constant and known,
while TTSi depends on the tracker information and Si Trep,
depends on the glove information.

Bi Trcp, is used to solve the arm inverse kinematics. Due
to the arm structure, up to 8 different kinematic solutions can
be obtained. In this work, the configuration shown in Fig. 3
is always selected (it looks visually as the most human-like
posture), being the solution for each joint given by inverse
kinematics in the range [—m, 7). It should be remarked here
that all the joints of the URS5 robot have a range [—2, 27],
therefore it is possible to adjust the values of the angles (by
adding or substracting 27) within the total range of 47 in
such a way that the samples are grouped with a minimal
variance, which improves the results of the PCA. Then,
after solving the inverse kinematics of both arms for all the
samples, the values of the arm joints are adjusted as follows.

The average angle 6, of all the resulting values for each
joint j is computed as':

0; = atan2 (gj,éj) 3)

R T L1y
with S; = - ;sm (0;,) and C; = - ;cos 0;,) @
where n is the number of processed samples. The function
atan2 (y,z) is the arctangent with two arguments and its
use is mandatory to get éj in the appropriate quadrant. The
resulting average angle lies in the range [—7, 7). Then, the

value I%; = §j2 + C'jz is a measure of the distribution of
values, i.e. if Vk 0;, = éj then R; = 1, and if the values

Note that the arithmetic mean cannot be used since it does not take into
account that any angle plus +27 rad represents the same joint position.



of 6, are uniformly distributed then R; = 0 and 6, is not
defined (note that R; = 0 implies that C; = S; = 0 and then
atan2 (0,0) is not defined; in this case, éj = 0 is chosen).
Finally, the average angle éj of each joint j is used to adjust
the joint values 6; obtained from the inverse kinematics
solutions to new values éjk as,

é- _{ ij . lf ‘ij.—Gj‘Sﬂ'
Tk 0;, —sign(6;,)2m  otherwise

minimizing in this way the variance of the samples.

(5)

C. Principal Component Analysis

A Principal Component Analysis (PCA) is run over the
arm configurations of both arms resulting from the mapping.
Since all the joints have the same movement range, it is not
necessary to normalize the scale of the samples.

The PCA identifies the directions of the dual-arm config-
uration space where the samples have larger dispersion. The
larger the eigenvalues, the larger the dispersion of the data
along the corresponding eigenvector directions.

The vectors of the new base of the dual-arm configuration
space returned by the PCA are ordered in a decreasing order
according to the corresponding dispersion of the samples
(i.e. the first vector indicates the direction with maximum
dispersion of samples). The directions indicated by these
vectors are called Principal Motion Directions (PMDs) and
represent the arm synergies. In the rest of the paper synergies
and PMDs will be used with equivalent meaning.

IV. PLANNER
A. PMD subspace

The planner used in this work is an RRT-Connect that
is run on a subspace of the whole m-dimensional dual-arm
configuration space (m = 12 for the dual-arm system used in
this work). This subspace, called PMD subspace, is defined
by a reduced number of PMDs which is chosen to cover a
predefined percentage of the samples used to compute them.

B. Start and goal configurations

The goal of a manipulation task carried out by the dual-
hand system can be described by the constraints affecting the
poses of the objects grasped by the hands. The configurations
of the objects that satisfy the goal of the manipulation task
form the goal subspace, and its dimension depends on the
imposed constraints (for instance, the initial relative pose for
insertion of a cylindrical peg grasped by the left hand into
a cylindrical box grasped by the right one has 7 DOF if
the insertion can be performed anywhere in the workspace,
while it has 4 if the base of the box has to lie on the table).

Once a manipulation task is defined, the goal subspace
is sampled and the samples are verified to be feasible (i.e.
an inverse kinematic solution exists for the robots to place
the objects there without colliding with the environment or
with themselves). Then, the robot configurations obtained
by the inverse kinematics are kept as valid goals for the
dual-arm system if: a) the distance to the PMD subspace is
below a given threshold and b) the projected configuration
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Fig. 4. Hypothetical representation of the whole task configuration space,
and the PMDs subspace where the RRT works; the real initial and goal
configurations (c; and c¢g) and their projections on the PMDs subspace (¢/;
and c’y) are also represented.

onto the PMD subspace and the path connecting the goal
and its projection are also collision-free. The projected
configurations of the valid goals are called PMD goals. It is
assumed that the start configuration, its projection onto the
PMD subspace (called PMD start) and the path connecting
them are collision-free.

C. Planning procedure

The planning procedure to connect the PMD start to
any of the PMD goals is as follows. One instance of the
RRT-Connect planner [3] is launched per PMD goal, like
the one shown in Fig. 4 connecting the PMD start, ¢}, to the
PMD goal, c;, which are the configurations projected onto
the PMD subspace from the initial and goal configurations,
c¢; and cg4, respectively. All the RRT-Connect instances run
in parallel and once a solution path is found by one of them,
the motion planning is stopped and all the other threads are
killed.

V. EXPERIMENTAL RESULTS

A. Demonstration Task

Several experiments have been executed in order to obtain
different sets of PMDs and verify their effect in the planning
process. In all the cases, a human operator was asked to
execute at least 30 times a given task using the arms without
moving the rest of the body (this generates sets of more than
10,000 samples). To illustrate the approach, we show in this
sections the results for an assembly task in which the human
operator must grasp a cylindrical box and a soda can, and
introduce the can into the box. Besides, looking for a general
and practical application of the approach, we also capture the
movements and obtain the PMDs when the operator freely
moves both arms and hands in an unconstrained way (i.e.
without performing any specific task) trying to cover the
whole workspace, we will refer to this as a free-movement
task. There is no guarantee that the operator actually covers
the whole workspace, but in this way it is expected that
he/she performs his/her most natural and evident movements.



Fig. 5.

Assembly

100%
80%
60%
40%
20%
0% T T T T T T T T T T T |

1 2 3 4 5 6 7 8 9 10 11 12

Free movement
100%
80% /
60% —
40%
20% -ﬁ
0% -
1 2 3 4 5 6 7 8 9 10 11 12
Accumulated variance of samples versus the number of PMDs.

Fig. 6.

B. Obtaining the PMDs

The whole process described in Section III was applied
to the tasks mentioned in Subsection V-A, and a set of
PMDs was obtained in each case (i.e. a new base of the
12-dimensional space of the dual-arm configurations, with
the vectors in each base ordered according to the variance
of the samples along them). In order to give an illustrative
example, some snapshots of the movement of the arms along
the first PMD of the assembly task are shown in Fig. 5.

Table I shows the resulting variances along each PMD for
each task, which are graphically represented in Fig. 6. Note
that for the assembly task more than 95% of the sample
variance is associated with the first PMD, while the rest of
the PMDs have a very small dispersion. This means that the
task executions were quite repetitive, and that the task could
(almost) be done considering only one degree of freedom.

Looking to the results of the free-movement task, it can
be seen that the dispersion is relevant along the first six or
seven PMDs. This effect was expected since the operator has
more freedom to perform the movements, which can also be
seen in the total variance of the samples, clearly greater than
in the assembly task (see Table I).

C. Motion planning

The assembly task described above was used to see
the effect of using the PMDs in the planning phase. A
RRT-Connect was run on: a) the complete 12-dimensional
dual-arm configuration space, b) a 4-dimensional subspace
resulting of the selection of the first four PMDs obtained
specifically for the assembly task, covering 99.4% of the
sample variance from the operator movements, and c) a
8-dimensional subspace resulting of the selection of the first
eight PMDs obtained from the free-movement task, covering
94.7% of the sample variance from the operator movements.

Snapshots of the movements of the arms following the first PMD of the assembly task.

TABLE I
SAMPLE VARIANCE ALONG THE j-TH PMD AND TOTAL SAMPLE
VARIANCE FOR EACH TASK.

Task Assembly Free movements
var. [ accumul. var. [ accumul.
1st PMD 95.4% 95.4% 29.6% 29.6%
2nd PMD 2.9% 98.3% 16.7% 46.3%
3rd PMD 0.8% 99.1% 13.2% 59.5%
4th PMD 0.3% 99.4% 10.9% 70.4%
5th PMD 0.2% 99.6% 10.2% 80.6%
6th PMD 0.1% 99.7% 7.3% 87.9%
7th PMD 0.1% 99.8% 4.7% 92.6%
8th PMD 0.1% 99.9% 2.1% 94.7%
9th PMD 0.0% 99.9% 2.0% 96.7%
10th PMD 0.0% 99.9% 1.2% 97.9%
11th PMD 0.0% 99.9% 1.2% 99.1%
12th PMD 0.0% 100% 0.9% 100%
| Total [rad”] | 0.357 | 1.08 |

In the three cases the same starting configuration of the
dual-arm system and the same ten task goals were used (the
number of goals was empirically selected). The ten task goals
were obtained as follows, based on the procedure mentioned
in Section IV. First, several potential goal configurations
were generated in the physical space, i.e. configurations of
the two objects to be assembled (the box and the soda
can) satisfying the geometrical constraints between them
necessary for the assembly operation (see Fig. 7). Note that
for the assembly of the can inside the cylindrical box, the
goal space is 7-dimensional, i.e. the assembly can be done
in any position and orientation (six DOF) and the can can
rotate around its axis while satisfying the pre-assembly pose
constraints (one additional DOF). Then, these potential goals
were checked to be kinematically reachable and collision
free, and a set with the ten goals that have the smallest of the
maximal distances to the 4-dimensional and 8-dimensional
search spaces were selected (see examples in Fig. 7). In this
way, the (random) set of ten goals can be used for the motion
planner running in any of the three cases mentioned above.

In order to solve each of the three considered cases, an
instance of the planner was run in parallel for each goal
configuration, and once a valid path to solve the task was
found by one the instances, the motion planer was stopped.
A limit of 100 seconds and 1,000 Mbytes of memory
was imposed to the executions, if the planner could not
find a solution with these constraints the planner run was
considered as a failure.



d)
Goal configurations: a) several examples in the physical space,
b) not valid due to collisions, c) satisfying the assembly constraints far
away from the search space, d) satisfying the assembly constraints close to
the search space.

Fig. 7.

The Open Motion Planning Library (OMPL [27]) imple-
mentaion of the RRT-Connect has been used encapsulated
within The Kautham Project, the planning and simulation
environment [26]. Table II shows the average results obtained
after 100 executions per case, running in a 2.13-GHz Intel
Core 2, 4-GB RAM PC. The table includes: the number of
used PMDs, the dimension of the search space, the success
rate, the used memory until arriving a solution, the time
needed to find a solution, the length of the solution evaluated
as the summation of the joints movements in radians, and
the percentage of valid segments out of all the segments that
were checked for validity in the RRT. Fig. 8 shows one of
the solution paths obtained for the assembly task in each of
the three considered cases.

From the experimental results the following can be stated:

o The use of PMDs increases the probability of obtain-
ing collision-free configurations (fewer auto-collisions
occur), thus reducing the computation time.

e The use of PMDs lowers the dimension of the search
space, which lowers the number of nodes and edges of
the tree and hence reduces the memory requirements.

o The use of PMDs results in motions that look more like
the human motions.

o The above three results are more pronounced when task
specific PMDs are used, but for general applications
the utility of PMDs obtained with the free-movement
task is still evident, since they also improve the results
compared with planning without using PMDs.

VI. DISCUSSION AND FUTURE WORK

The paper has proposed original work dealing with the
search and use of synergies of an anthropomorphic dual-arm

TABLE II
AVERAGE RESULTS OF THE MOTION PLANNING.

(a) (b) (©)

case without with task with other

PMDs | specific PMDs PMDs
used PMDs 0 4 8
space dimension 12 4 8
success rate (%) 100 100 100
used memory (Mb) 63.36 28.64 48.56
used time (s) 2.66 0.35 1.35
solution length (rad) 21.40 4.99 13.49
valid segments (%) 20 69 42

system. The approach has been implemented and an example
was presented to illustrate the proposed ideas.

The concept of synergies has previously been successfully
applied to anthropomorphic robotic hands, but the application
to the arm’s behavior was not considered before. This work
opens the field towards two main aspects, one is the simpli-
fication of the planning procedure for dual-arm systems (in
the same way as it was previously done for the hands) as
it was shown in the paper, and the other is the possibility
of classifying the tasks according to the resulting synergies,
which will allow further improvements in the planning time
as well as in the similarity with the human actions.

Direct future work is related with a deep analysis of
different tasks that can be done with a dual-arm system,
in such a way that a taxonomy or clusters of tasks could
be done using the PMDs (synergies) to define a “distance”
among them. Those tasks with similar systems of PMDs
could be addressed and treated in similar way for motion
planning purpose, thus improving the planning performance.
The extension of the proposed concepts to arms forming a
closed kinematic chain, e.g. when moving an object grasped
by both hands, in another interesting topic for future work.
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