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Abstract— The paper deals with the problem of motion
planning of anthropomorphic mechanical hands avoiding col-
lisions. The proposed approach tries to mimic the real human
hand motions, but reducing the dimension of the search space
in order to obtain results as a compromise between motion
optimality and planning complexity (time) by means of the
concept of principal motion directions. Basically, the work
includes the following phases: capturing the human hand
workspace using a sensorized glove and mapping it to the
mechanical hand workspace, reducing the space dimension by
looking for the most relevant principal motion directions, and
planning the hand movements using a sampling-based roadmap
planner. The approach has been implemented for a four finger
anthropomorphic mechanical hand, and some examples are
included to illustrate its validity.

I. INTRODUCTION

Advances in robotics are producing a number of com-
plex devices with a high number of degrees of freedom
(DOF), lots of sensors, and sophisticated controllers to assure
stability and a good performance. These devices include
different types of robots, adapted to different environments
and tasks, and among them the most representative instances
are the humanoids, equipped with anthropomorphic hands
with a number of DOF ranging from 12 (four fingers with
3 independent DOF each one) to 25 (five fingers with 4
independent DOF each one plus some DOF in the palm [1]).
Examples of anthropomorphic hands with four fingers are
the Utah/MIT Hand [2], DIST Hand [3], LMS Hand [4];
DLR Hand [5] and MA-I Hand [6], and examples with five
fingers are the Belgrade/USC Hand [7], Anthrobot-2 Hand
[8], NTU Hand [9], ROBONAUT [10], Shadow Hand [11],
Gifu Hand [12] and Bolonia Hand 3 [13]. Good discussions
about robot hands can be found in [14] and [15].

Despite the advanced features of these mechanical hands,
one of the remaining problems in order to obtain a good
outcome from them is the automatic determination of their
movements, which are quite complex and non-evident for
the human being in the space of generalized coordinates.
This is a well-known motion planning problem, but in a
very large dimensional space, thus some new approaches are
still necessary in order to find solutions that can be really
implemented and used in practice. This paper presents some
developments in this line, looking for procedures that allow
the automatic motion planning of anthropomorphic hands in
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a smooth way, caring for collisions with the environment as
well as between the different parts of the hand.

II. PROBLEM STATEMENT AND SOLUTION
OVERVIEW

Let C = Ch + Ca be the configuration space of a hand-
arm system, whereCh andCa are the configuration spaces of
the hand and of the arm where it is mounted, respectively.
The basic problem to be solved is the following: given the
current hand-arm configurationCo and a final desired one
Cd (that is not necessarily a grasping configuration), find a
collision free path fromCo to Cd. The dimension of the
configuration space of this problem is equal to the number
of DOF of the hand plus the number of DOF of the arm,
therefore conventional solutions require high computational
times. In this context, the proposed approach is based on
a reduction of the configuration space dimension, which is
done by looking for a representative subspaceSCh of the
hand configuration spaceCh, and looking for continuous valid
paths in the compound subspaceSC = SCh + Ca. Of course,
there may be solutions inC not included inSC, thus the
selection of a proper subspaceSCh is a relevant step in the
proposed approach. On the other hand, if a solution is found
in SC, for sure it is valid inC.

The main consideration that supports the reduction of
the problem space is that the human hand has several
joint movements that are not (completely) independent, and
therefore they can be associated in some way. A typical
example is given by the last two joints of each finger,
which (normally) cannot be moved independently; in the
same way some other relations can be found analyzing the
hand configuration space. This feature can be extrapolated
to mechanical hands where the analysis is done by taking
enough samples ofCh and looking then for the direction in
which the samples present the largest dispersion, which is
iteratively repeated considering orthogonal directions until a
new basis ofCh is generated. Then, by selecting the first
vectors of this basis and properly choosing a bounding box
aligned with these vectors and centered in the mean value of
the original set of points, a good bounded approximationSCh

of Ch is found.
A relevant previous work in this line [16] uses an initial

set of grasping configurations to find a bidimensionalgrasp
subspace, i.e. to characterize the configurations of the hand
used to grasp different objects. This subspace is used in
other works to look for grasping configurations [17], [18].
As a difference with these works, we use here an initial
set of unconstrained general hand configurations in order to
model all the real hand workspace and not only potential
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Fig. 1. Sensorized glove used to capture the operator hand workspace.

grasping configurations. The particular procedure followed
to generate the set of hand configurations as well as to find
a proper bounded subspace is detailed in Section III. Once
the bounded subspace is determined, sampling-based motion
planning techniques are used to model the free configurations
and to find free paths between any two of them (Section IV).
Dimensionality reduction techniques have also been used to
synthesize human-like motion in graphic applications [19].

The approach followed in this work can be summarized
in the following steps:

1) Use a sensorized glove to obtain samples of the human
hand workspace (22 DOF) (Subsection III-A).

2) Map these samples to the configuration spaceCh of a
mechanical hand (13 DOF) (Subsection III-B).

3) Find a representative subspaceSCh of the mechanical
hand configuration spaceCh (between 3 and 6 DOF)
(Subsection III-C).

4) Use a sampling-based roadmap planner to model the
free space of the representative subspaceSC=SCh+Ca

(Section IV).
5) Finally, given an initial and final hand-arm configura-

tions of C (not necessarily belonging toSC), Co and
Cd respectively, connect them to the roadmap and use
it to find a free path between them.

III. MODELING HAND MOVEMENTS WITH
PRINCIPAL MOTION DIRECTIONS

A. Data Aqcuisition

The data acquisition is done using the commercial sen-
sorized glove CyberGlovec© from Immersion Corporation,
shown in Fig. 1. It is a fully instrumented glove that provides
up to 22 high-accuracy joint-angle measurements, using
resistive bendsensing technology. The 22-sensor model has
three flexion sensors per finger, four abduction sensors, a
palm-arc sensor, and sensors to measure the flexion and the
abduction of the wrist.

After a calibration procedure for each user’s hand, the
movements captured with the glove are mapped to move-

Fig. 2. Human hand with the sensorized glove connected to the mechanical
hand simulator used in the data acquisition procedure.
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Fig. 3. The anthropomorphic mechanical hand used.

ments of the mechanical hand through a virtual simula-
tor (Fig. 2), where the user has a visual feedback of the
mapping (detailed in the next subsection). Thus, the user
freely moves its hand in an unconstrained way, i.e. without
performing any specific task, trying to cover the whole
mechanical hand workspace. Mapped postures are recorded
for processing and analysis.

B. Mapping from the Sensorized Glove to the Mechanical
Hand

The Schunk antropomorphic hand (SAH) [20], shown
in Fig. 3, is a 13-DOF robotic hand based on the DLR
hand [5]. It has four identical fingers and one is equipped
with an additional joint to function as the opposing thumb.
Each finger has four joints, although the distal joint is
mechanically coupled to the middle joint, i.e. there are three
DOF per finger.

Since the SAH mimics the human hand movements,
mapping the data from the glove sensors to the movements
of the SAH is done in an almost direct way. The following
issues are considered for the mapping (see Figures 1 and 3):
• The palm of the mechanical hand is rigid and there-

fore the palm arc sensorv and the wrist flexion and
abduction sensorsb anda are ignored.

• The mechanical hand lacks the little finger and therefore
the sensorsu, t, s andr are ignored.

• The distal phalanx sensorsi, m, andq are not used since
the SAH hand has a coupling between the medium and
distal phalanx of each finger.



TABLE I

CORRESPONDENCE BETWEEN THECYBERGLOVE SENSORS(FIG. 1)

AND THE JOINTS OF THESAH HAND (FIG. 3).

Cyberglove Sensor SA Hand Joint
Id. Name Id. Name
c thumb roll 0 thumb base
c thumb roll 1 finger base (thumb)
e thumb inner 2 proximal phalanx (thumb)
f thumb outer 3 medium phalanx (thumb)
j index abduction 4 finger base (index)
g index inner 5 proximal phalanx (index)
h index middle 6 medium phalanx (index)
- medium abduction 7 finger base (medium)
k medium inner 8 proximal phalanx (medium)
l medium medium 9 medium phalanx (medium)
n ring abduction 10 finger base (ring)
o ring inner 11 proximal phalanx (ring)
p ring medium 12 medium phalanx (ring)
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Fig. 4. Top-left: Positive correlation between proximal phalanxes (8
and 11); Top-right: Negative correlation between the abduction of the
index and the ring (4 and 10); Bottom-left: Smooth positive correlation
between medium phalanxes (6 and 9); Bottom-right: No correlation between
consecutive phalanxes of the medium finger (8 and 9).

• Using the sensorc to control joint 1 produces a more
natural motion of the SAH hand than using sensord,
therefore sensorc is used for both joints 0 and 1.

• In the glove, the abduction is measured in a relative way,
i.e. sensorsj andn give, respectively, the relative angle
between the index and the middle fingers and between
the middle and the ring fingers. Then, the mapping
is done using the middle finger as reference, i.e. the
base of the middle finger (joint 7) is fixed to zero,
and sensorsj andn are directly associated to joints 4
and 10, respectively.

Then, only 11 values from the 22 available in the glove
are used in the mapping to the joints of the SAH mechanical
hand. The complete mapping is shown in Table I. Note
that this mapping makes the motions of the SAH hand
to be defined with 11 independent parameters, although it
has 13 DOF.
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Fig. 5. Total variance covered when using an increasing number of PMDs.

C. Principal Motion Directions

Dimensionality reduction of a feature set is a common pre-
processing step used for pattern recognition and classification
applications as well as in compression schemes. Principal
component analysis (PCA) is often used in these fields to
reduce multidimensional data sets to lower dimensions for
analysis [21]. It is also used as a tool in exploratory data
analysis and for making predictive models. PCA involves
the computation of the eigenvalue decomposition of a data
covariance matrix or the singular value decomposition of a
data matrix, usually after mean centering the data for each
attribute.

In this work, PCA is used to reduce the configuration space
of the mechanical hand SAH to a more tractable space of
smaller dimension, using the data recorded from the hand
postures (Section III-A). Fig. 4 shows some examples of
the existing correlation between joints, illustrating that an
effective reduction can be obtained.

The vectors that define the new base of the hand space
are called Principal Motion Directions (PMDs). Selecting
only the first vectors with higher associated variances a
reduced hand space is obtained: The first PMD represents
the 42.19% of the total variance in the analyzed dataset;
the first two components the 77.12%, and the first three
components the 84.71% (the complete evolution is shown in
Fig. 5). Therefore, in this work the use of three PMDs has
been considered sufficient. Fig. 6 shows the hand postures
along the two principal components, and Fig. 7 the postures
resulting from their linear combination.

IV. MOTION PLANNING

Sampling-based motion planners have demonstrated to be
one of the best alternatives for path planning problems, since
they avoid the explicit characterization of the obstacles of
the configuration spaceC. These planners generate collision-
free samples ofC and connect them with free paths cap-
turing the connectivity of the free space either by forming
roadmaps [22] or trees [23].

A sampling-based roadmap planner, using a deterministic
sampling sequence as sampling source, will be used here
to find the motions of the hand and of the arm where it
is mounted. It relies on generating samples from the lower
dimensional spaceSC obtained by considering, for the hand
motions, the subspaceSCh defined by the first three PMDs.
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Fig. 6. Configurations of the SAH hand when it is moved along the first two PMDs.
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Fig. 7. Configurations of the SAH hand when it is moved along a
combination of the first two PMDs.

A. The algorithm

A basic sampling-based roadmap planner has an initial
preprocessing phase to construct the graph that represents the
roadmap capturing the connectivity of the free configuration
space (Cfree). The nodes of the graph are the configurations
sampled fromCfree and the edges the collision-free paths
that connect them.

Fig. 8 shows the algorithm that returns the graphG

representing the roadmap. The input is the numberN of
configurations to sample. The functions used are:

• FunctionINSERT(s,V ): inserts a node to the setV of nodes
of the graph. The use of an efficient graph structure
like the ones provided by theBoost Graph Library [24]
greatly enhances the implementation.

• FunctionINSERT((s, q),E): inserts the edge (s, q) connect-
ing configurationss andq to the setE of edges of the
graph.

• FunctionGET-SAMPLE(): generates a configuration ofSC,
using the PMDs for the hand configurations, as it is
detailed in the following subsection.

• Function FREE(s): returns TRUE if the configurations

belongs toCfree. The use of a simple and efficient
collision detection library likePQP [25] is mandatory
since this is a time-consuming step of the process.

• Function NEIGBORHOOD(s): returns the set of up toK
samples that lie within a predefined neighborhood ofs.
This can be efficiently implemented using either the

Basic Sampling-Based RoadMap(N)

G.vertexSet← ∅, G.edgeSet← ∅ i← 0

For i = 1 to N do:

s = GET-SAMPLE()

If FREE(s) then

INSERT(s, G.vertexSet)

ForAll q ∈ G.vertexSet | s 6= q and q ∈ NEIGBORHOOD(s) do

If CONNECT(s, q) then

INSERT((s, q), G.edgeSet)

End If

End For

End If

End For

RETURN G

Fig. 8. Algorithm for the preprocessing phase of a basic sampling-based
roadmap planner.

MPNN algorithm [26] or taking advantage of the grid
structure if grid-based deterministic sampling sequences
are used [27].

• FunctionCONNECT(s,q): determines whether the rectilin-
ear path inC connectings and q is free or not by
performing the collision-check test to several of its
configurations. This can be efficiently done using the
binary method [28].

The second phase of a sampling-based roadmap planner is
the query phase where the initial and the goal configurations
(Co and Cd) are connected to the roadmap, and graph
search algorithms are used to find a path connecting them.
In the proposed implementation, the initial and the goal
configurations of the hand are free configurations that are not
constrained to lie in the subspaceSCh defined by the PMDs,
but they can be any configuration ofCh. The connection of
Co andCd to the roadmap is done searching for free paths
in C between these configurations and the nearest nodes in
the roadmap, using theCONNECT(s,q) function. The search
algorithm used is the A*.

B. The sampling source

Sampling-based methods usually rely on the use of a
random number generation source, although the use of
deterministic sampling sequences is a good alternative [29].
Deterministic sampling sequences provide an incremental
and uniform coverage ofC, with a better dispersion than
random sampling. Deterministic sampling has given slightly
better results than random sampling in roadmap planners [30]
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Fig. 9. Configurations: a)Co and b)Cd.

(although Hsu et al. [31] constrained this improvement to
few degrees of freedom tasks and considered it much less
significant than the importance sampling issue devoted to
bias the samples towards regions relevant to the task). With
the objective of sampling uniformly over the space defined
by the first main PMDs, the use of a deterministic sampling
sequence is therefore a good option. In this work, thesd(k)
deterministic sequence has been chosen [32]. It is a determin-
istic sequence based on a multi-grid cell decomposition and
on the use of the digital construction method first proposed
in [33]. The sd(k) sequence is a sequence of cells of the
maximum partition level. Samples are random configurations
within those cells, with coordinates in the range[0, 1].

Let H = dim(Ch), A = dim(Ca), andh = dim(SCh). The
function GET-SAMPLE() uses thesd(k) sequence to obtain a
d-dimensional sample fromSC, with d = A + h. The first
A components are scaled to obtain theA joint coordinates
of the arm within the corresponding joint ranges; the lasth

components are used to obtain theH joint coordinates of the
mechanical hand as follows. Let:
• ei, i = 1, . . . , h, be the unitary vectors defining the

first h PMDs (when ordered in a decreasing order of
the variance given by the corresponding eigenvaluesλi,
of the eigenvalue decomposition of the data covariance
matrix).

• b = (b1, . . . , bH)T be the data mean (Section III-C).
• ∆i = 4

√
λi be the range (centered atb) covered by the

95% of the dataset along the direction defined byei.
• E be aH×h matrix defined asE = [∆1e1, . . . ,∆heh].
• p = (p1, . . . , ph)T be the lasth components of the

sample generated by thesd(k) sequence, shifted by
−0.5 along each component, i.e.−0.5 ≤ pi ≤ 0.5
(recall thatsd(k) gives values within[0, 1] and sample
p should span the joint coordinates aroundb).

Then, the joint valuesΘ = (θ1, . . . , θH)T of the mechanical
hand are obtained as follows:

Θ = E p + b

V. EVALUATION AND DISCUSSION

The evaluation of the proposed approach is done by
comparing its efficiency with that of a basic probabilistic
roadmap planner. Fig. 9 shows the initial and goal configu-
rations (Co and Cd) of the planning problem to be solved,
where the SAH hand is mounted on a robot with three
revolute joints. Therefore, considering three PMDs,SC is

TABLE II

COMPARISON BETWEEN APPROACHES FOR THE TEST CASE

# samples # nodes
Mean Mean 95% Confidence Interval

16-RND 63 21 [12.9, 28.3]
6-SDK 25 15 [12.0, 17.9]

6-dimensional (this scenario is called 6-SDK). On the other
hand, the basic PRM samples randomly over all the joint
space, and therefore the spaceC where the planning is done
is 16-dimensional (this scenario is called 16-RND).

Table II shows the summary results of 10 trials per
scenario. It can be seen that the proposed approach is able
to solve the problem with less samples than the basic PRM,
and with less variability between trials. One reason for
this efficiency is that the sampling over PMDs provides
(self)collision-free samples more often than sampling over
all the joint space, and with hand-postures that mimic those
of the human hand, being therefore best suited to avoid
collisions with the objects to be grasped.

Aside from the quantitative results, it is worth noting
that the motions obtained with the proposed approach look
more natural from the anthropomorphic and aesthetic points
of view, as it can be appreciated in Fig. 10 where two
sequences of snapshots are shown, respectively, for the
16-RND and 6-SDK case. This advantage is less evident
if a postprocessing smoothing is done in the 16-RND case,
although this adds an extra computational cost.

VI. CONCLUSIONS

This paper has presented an efficient methodology to com-
pute collision-free motions of a hand-arm system based on
the principal motions direction (PMDs). These directions, ob-
tained by demonstration using pattern recognition techniques,
capture the natural motion of the human hand. Taking the
PMDs with more weight (those with larger variances), allows
a reduction of the dimension of the hand-movement space
that greatly eases the work of a sampling-based roadmap
planner. Added to a good computational efficiency, the hand
motions obtained by the proposed planner are more natural
than those obtained when all the degrees of freedom of
the hand are directly sampled using a random sampling
sequence in the joint space. Currently, the proposed planner
is being enhanced by the use of an importance sampling
method to bias the samples towards more relevant regions
of the configuration space, in order to perform tasks with
smaller clearances. Future work includes the implementation
of rapidly-exploring random trees to quickly solve single
queries.
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